- Award ID(s):
- 2029557
- NSF-PAR ID:
- 10339241
- Date Published:
- Journal Name:
- IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI)
- Page Range / eLocation ID:
- 57 to 60
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper leverages natural language processing, spatial analysis, and statistical analysis to examine the relationship between restaurants’ safety violations and COVID-19 cases. We used location-based consumers’ complaints data during the early stage of business reopening in Florida, USA. First, statistical analysis was conducted to examine the correlation between restaurants’ safety violations and COVID-19 transmission. Second, a neural network-based deep learning model was developed to perform topic modeling based on consumers’ complaints. Third, spatial modeling of the complaints’ geographic distributions was performed to identify the hotspots of consumers’ complaints and COVID-19 cases. The results reveal a positive relationship between consumers’ complaints about restaurants’ safety violations and COVID-19 cases. In particular, consumers’ complaints about personal protection measures had the highest correlation with COVID-19 cases, followed by environmental safety measures. Our analytical methods and findings shed light on customers’ behavioral shifts and hospitality businesses’ adaptive practices during a pandemic.more » « less
-
Abstract The coronavirus pandemic has already caused plenty of severe problems for humanity and the economy. The exact impact of the COVID-19 pandemic is still unknown, and economists and financial advisers are exploring all possible scenarios to mitigate the risks arising from the pandemic. An intriguing question is whether this pandemic and its impacts are similar, and to what extent, to any other catastrophic events that occurred in the past, such as the 2009 Great Recession. This paper intends to address this problem by analyzing official public announcements and statements issued by federal authorities such as the Federal Reserve. More specifically, we measure similarities of consecutive statements issued by the Federal Reserve during the 2009 Great Recession and the COVID-19 pandemic using natural language processing techniques. Furthermore, we explore the usage of document embedding representations of the statements in a more complex task: clustering. Our analysis shows that, using an advanced NLP technique in document embedding such as Doc2Vec, we can detect a difference of 10.8% in similarities of Federal Open Market Committee (FOMC) statements issued during the Great Recession (2007–2009) and the COVID-19 pandemic. Finally, the results of our clustering exercise show that the document embeddings representations of the statements are suitable for more complex tasks, which provides a basis for future applications of state-of-the-art natural language processing techniques using the FOMC post-meeting statements as the dataset.
-
B. Feng, G. Pedrielli (Ed.)Increased demand for medical supplies, and specifically respirators and face masks, during the Covid-19 pandemic along with the inability of legitimate suppliers to meet these needs created a window of opportunity for counterfeiters to capitalize on the supply chain disruptions caused by a global health crisis. Both legitimate and illicit businesses began shifting their scope from sectors such as textiles to producing and distributing personal protective equipment (PPE), many of which were counterfeit or unauthentic products and thus unable to properly protect users. To study cost-effective disruption strategies, this study proposes a simulation-optimization framework. The framework is used to model counterfeiters’ behavior and analyze the effectiveness of different disruption strategies for counterfeit PPE supply chains during the Covid-19 pandemic.more » « less
-
null (Ed.)COVID-19 pandemic has an unprecedented impact all over the world since early 2020. During this public health crisis, reliable forecasting of the disease becomes critical for resource allocation and administrative planning. The results from compartmental models such as SIR and SEIR are popularly referred by CDC and news media. With more and more COVID-19 data becoming available, we examine the following question: Can a direct data-driven approach without modeling the disease spreading dynamics outperform the well referred compartmental models and their variants? In this paper, we show the possibility. It is observed that as COVID-19 spreads at different speed and scale in different geographic regions, it is highly likely that similar progression patterns are shared among these regions within different time periods. This intuition lead us to develop a new neural forecasting model, called Attention Crossing Time Series (ACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions. The attention mechanism originally developed for natural language processing can be leveraged and generalized to materialize this idea. Among 13 out of 18 testings including forecasting newly conrmed cases, hospitalizations and deaths, ACTS outperforms all the leading COVID-19 forecasters highlighted by CDC.more » « less
-
Small businesses have suffered disproportionately from the COVID-19 pandemic. We use near-real-time weekly data from the Small Business Pulse Survey (April 26, 2020 - June 17, 2021) to examine the constantly changing impact of COVID-19 on small businesses across the United States. A set of multilevel models for change are adopted to model the trajectories of the various kinds of impact as perceived by business owners (subjective) and those recorded for business operations (objective), providing insights into regional resilience from a small business perspective. The findings reveal spatially uneven and varied trajectories in both the subjectively and the objectively assessed impact of COVID-19 across the U.S., and the different responses to the pandemic shock can be explained by evolving health situations and public policies, as well as by the economic structure and degree of socioeconomic vulnerability in different areas. This study contributes to scholarship on small businesses and regional resilience, as well as identifying policies and practices that build economic resilience and regional development under conditions of global pandemic disruption.