skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energetics and mixing in buoyancy-driven near-bottom stratified flow
Turbulence and mixing in a near-bottom convectively driven flow are examined by numerical simulations of a model problem: a statically unstable disturbance at a slope with inclination $$\unicode[STIX]{x1D6FD}$$ in a stable background with buoyancy frequency $$N$$ . The influence of slope angle and initial disturbance amplitude are quantified in a parametric study. The flow evolution involves energy exchange between four energy reservoirs, namely the mean and turbulent components of kinetic energy (KE) and available potential energy (APE). In contrast to the zero-slope case where the mean flow is negligible, the presence of a slope leads to a current that oscillates with $$\unicode[STIX]{x1D714}=N\sin \unicode[STIX]{x1D6FD}$$ and qualitatively changes the subsequent evolution of the initial density disturbance. The frequency, $$N\sin \unicode[STIX]{x1D6FD}$$ , and the initial speed of the current are predicted using linear theory. The energy transfer in the sloping cases is dominated by an oscillatory exchange between mean APE and mean KE with a transfer to turbulence at specific phases. In all simulated cases, the positive buoyancy flux during episodes of convective instability at the zero-velocity phase is the dominant contributor to turbulent kinetic energy (TKE) although the shear production becomes increasingly important with increasing  $$\unicode[STIX]{x1D6FD}$$ . Energy that initially resides wholly in mean available potential energy is lost through conversion to turbulence and the subsequent dissipation of TKE and turbulent available potential energy. A key result is that, in contrast to the explosive loss of energy during the initial convective instability in the non-sloping case, the sloping cases exhibit a more gradual energy loss that is sustained over a long time interval. The slope-parallel oscillation introduces a new flow time scale $$T=2\unicode[STIX]{x03C0}/(N\sin \unicode[STIX]{x1D6FD})$$ and, consequently, the fraction of initial APE that is converted to turbulence during convective instability progressively decreases with increasing $$\unicode[STIX]{x1D6FD}$$ . For moderate slopes with $$\unicode[STIX]{x1D6FD}<10^{\circ }$$ , most of the net energy loss takes place during an initial, short ( $$Nt\approx 20$$ ) interval with periodic convective overturns. For steeper slopes, most of the energy loss takes place during a later, long ( $Nt>100$ ) interval when both shear and convective instability occur, and the energy loss rate is approximately constant. The mixing efficiency during the initial period dominated by convectively driven turbulence is found to be substantially higher (exceeds 0.5) than the widely used value of 0.2. The mixing efficiency at long time in the present problem of a convective overturn at a boundary varies between 0.24 and 0.3.  more » « less
Award ID(s):
1459774
PAR ID:
10339257
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
869
ISSN:
0022-1120
Page Range / eLocation ID:
214 to 237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high- $$\unicode[STIX]{x1D6FD}$$ ) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced magnetohydrodynamic turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in magnetohydrodynamics, and the turbulence is more strongly dominated by magnetic energy (a non-zero ‘residual energy’). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the $$\unicode[STIX]{x1D6FD}\gtrsim 1$$ turbulent solar wind. 
    more » « less
  2. A heat flux in a high- $$\unicode[STIX]{x1D6FD}$$ plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as $$1/\unicode[STIX]{x1D6FD}$$ . We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of $$\unicode[STIX]{x1D6FD}$$ and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high- $$\unicode[STIX]{x1D6FD}$$ astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and $$\unicode[STIX]{x1D6FD}$$ . For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients. 
    more » « less
  3. null (Ed.)
    In a magnetized, collisionless plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase in the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a $$\unicode[STIX]{x1D6FD}$$ -dependent threshold (where $$\unicode[STIX]{x1D6FD}$$ is the ratio of thermal to magnetic pressure), this pressure anisotropy drives the mirror instability, producing strong distortions in the field lines on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using a simple analytical model for the formation of a current sheet (CS) and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a CS in a collisionless plasma, coupled with the low threshold for the mirror instability in a high- $$\unicode[STIX]{x1D6FD}$$ plasma, imply that the geometry of reconnecting magnetic fields can differ radically from the standard Harris-sheet profile often used in simulations of collisionless reconnection. As a result, depending on the rate of CS formation and the initial CS thickness, tearing modes whose growth rates and wavenumbers are boosted by this difference may disrupt the mirror-infested CS before standard tearing modes can develop. A quantitative theory is developed to illustrate this process, which may find application in the tearing-mediated disruption of kinetic magnetorotational ‘channel’ modes. 
    more » « less
  4. Let $$\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$$ and $$\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$$ , where $$p_{n}/q_{n}$$ is the continued fraction approximation to $$\unicode[STIX]{x1D6FC}$$ . Let $$(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$$ be the almost Mathieu operator on $$\ell ^{2}(\mathbb{Z})$$ , where $$\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . 
    more » « less
  5. Abstract In the inner core of a tropical cyclone, turbulence not only exists in the boundary layer (BL) but also can be generated above the BL by eyewall and rainband clouds. Thus, the treatment of vertical turbulent mixing must go beyond the conventional scope of the BL. The turbulence schemes formulated based on the turbulent kinetic energy (TKE) are attractive as they are applicable to both deep and shallow convection regimes in the TC inner core provided that the TKE production and dissipation can be appropriately determined. However, TKE schemes are not self-closed. They must be closed by an empirically prescribed vertical profile of mixing length. This motivates this study to investigate the sensitivity of the simulated TC intensification to the sloping curvature and asymptotic length scale of mixing length, the two parameters that determine the vertical distribution of a prescribed mixing length. To tackle the problem, both idealized and real-case TC simulations are performed. The results show that the simulated TC intensification is sensitive to the sloping curvature of mixing length but only exhibits marginal sensitivity to the asymptotic length scale. The underlying reasons for such sensitivities are explored analytically based on the Mellor and Yamada Level-2 turbulence model and the analyses of azimuthal-mean tangential wind budget. The results highlight the uncertainty and importance of mixing length in numerical prediction of TCs and suggest that future research should focus on searching for physical constraints on mixing length, particularly in the low to mid troposphere, using observations and large eddy simulations. 
    more » « less