skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magneto-immutable turbulence in weakly collisional plasmas
We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high- $$\unicode[STIX]{x1D6FD}$$ ) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced magnetohydrodynamic turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in magnetohydrodynamics, and the turbulence is more strongly dominated by magnetic energy (a non-zero ‘residual energy’). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the $$\unicode[STIX]{x1D6FD}\gtrsim 1$$ turbulent solar wind.  more » « less
Award ID(s):
1804048
PAR ID:
10204598
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
85
Issue:
1
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind. 
    more » « less
  2. Turbulence and mixing in a near-bottom convectively driven flow are examined by numerical simulations of a model problem: a statically unstable disturbance at a slope with inclination $$\unicode[STIX]{x1D6FD}$$ in a stable background with buoyancy frequency $$N$$ . The influence of slope angle and initial disturbance amplitude are quantified in a parametric study. The flow evolution involves energy exchange between four energy reservoirs, namely the mean and turbulent components of kinetic energy (KE) and available potential energy (APE). In contrast to the zero-slope case where the mean flow is negligible, the presence of a slope leads to a current that oscillates with $$\unicode[STIX]{x1D714}=N\sin \unicode[STIX]{x1D6FD}$$ and qualitatively changes the subsequent evolution of the initial density disturbance. The frequency, $$N\sin \unicode[STIX]{x1D6FD}$$ , and the initial speed of the current are predicted using linear theory. The energy transfer in the sloping cases is dominated by an oscillatory exchange between mean APE and mean KE with a transfer to turbulence at specific phases. In all simulated cases, the positive buoyancy flux during episodes of convective instability at the zero-velocity phase is the dominant contributor to turbulent kinetic energy (TKE) although the shear production becomes increasingly important with increasing  $$\unicode[STIX]{x1D6FD}$$ . Energy that initially resides wholly in mean available potential energy is lost through conversion to turbulence and the subsequent dissipation of TKE and turbulent available potential energy. A key result is that, in contrast to the explosive loss of energy during the initial convective instability in the non-sloping case, the sloping cases exhibit a more gradual energy loss that is sustained over a long time interval. The slope-parallel oscillation introduces a new flow time scale $$T=2\unicode[STIX]{x03C0}/(N\sin \unicode[STIX]{x1D6FD})$$ and, consequently, the fraction of initial APE that is converted to turbulence during convective instability progressively decreases with increasing $$\unicode[STIX]{x1D6FD}$$ . For moderate slopes with $$\unicode[STIX]{x1D6FD}<10^{\circ }$$ , most of the net energy loss takes place during an initial, short ( $$Nt\approx 20$$ ) interval with periodic convective overturns. For steeper slopes, most of the energy loss takes place during a later, long ( $Nt>100$ ) interval when both shear and convective instability occur, and the energy loss rate is approximately constant. The mixing efficiency during the initial period dominated by convectively driven turbulence is found to be substantially higher (exceeds 0.5) than the widely used value of 0.2. The mixing efficiency at long time in the present problem of a convective overturn at a boundary varies between 0.24 and 0.3. 
    more » « less
  3. null (Ed.)
    In a magnetized, collisionless plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase in the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a $$\unicode[STIX]{x1D6FD}$$ -dependent threshold (where $$\unicode[STIX]{x1D6FD}$$ is the ratio of thermal to magnetic pressure), this pressure anisotropy drives the mirror instability, producing strong distortions in the field lines on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using a simple analytical model for the formation of a current sheet (CS) and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a CS in a collisionless plasma, coupled with the low threshold for the mirror instability in a high- $$\unicode[STIX]{x1D6FD}$$ plasma, imply that the geometry of reconnecting magnetic fields can differ radically from the standard Harris-sheet profile often used in simulations of collisionless reconnection. As a result, depending on the rate of CS formation and the initial CS thickness, tearing modes whose growth rates and wavenumbers are boosted by this difference may disrupt the mirror-infested CS before standard tearing modes can develop. A quantitative theory is developed to illustrate this process, which may find application in the tearing-mediated disruption of kinetic magnetorotational ‘channel’ modes. 
    more » « less
  4. A heat flux in a high- $$\unicode[STIX]{x1D6FD}$$ plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as $$1/\unicode[STIX]{x1D6FD}$$ . We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of $$\unicode[STIX]{x1D6FD}$$ and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high- $$\unicode[STIX]{x1D6FD}$$ astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and $$\unicode[STIX]{x1D6FD}$$ . For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients. 
    more » « less
  5. The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains in local thermodynamic equilibrium (LTE), have long been used to describe turbulence in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas, from the solar wind to the intracluster medium (ICM) of galaxy clusters, are only weakly collisional at best, meaning that significant deviations from LTE are not only possible but common. Recent studies have demonstrated that the kinetic physics inherent to this weakly collisional regime can fundamentally transform the evolution of such plasmas across a wide range of scales. Here, we explore the consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,$$\beta \gg 1$$, turbulence, focusing on the role of a self-organizational effect known as ‘magneto-immutability’. We describe this self-organization analytically through a high-$$\beta$$, reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result, the turbulent cascade of Alfvénic fluctuations continues below the putative viscous scale to form a robust, nearly conservative, MHD-like inertial range. These findings are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that employ a collisional closure to mimic the effects of microinstabilities. We find that microinstabilities occupy a small ($${\sim }5\,\%$$) volume-filling fraction of the plasma, even when the pressure anisotropy is driven strongly towards its instability thresholds. We discuss these results in the context of recent predictions for ion-vs-electron heating in low-luminosity accretion flows and observations implying suppressed viscosity in ICM turbulence. 
    more » « less