Conservation translocation projects must carefully balance multiple, potentially competing objectives (e.g. population viability, retention of genetic diversity, delivery of key ecological services) against conflicting stakeholder values and severe time and cost constraints. Advanced decision support tools would facilitate identifying practical solutions. We examined how to achieve compromise across competing objectives in conservation translocations via an examination of giant tortoises in the Galapagos Islands with ancestry from the extinct Floreana Island species ( We developed a novel approach to this conservation decision problem by coupling an individual‐based simulation model with generalized additive models and global optimization. We identified several incompatibilities among programme objectives, with quasi‐optimal single‐objective solutions (sets of management actions) differing substantially in programme duration, translocation age, incubation temperature (determinant of sex ratio) and the number of individuals directly translocated from the source population. Quasi‐optimal single‐objective solutions were able to produce outcomes (i.e. population size and measures of genetic diversity and
- Publication Date:
- NSF-PAR ID:
- 10339286
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 24
- ISSN:
- 0027-8424
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Chelonoidis niger ). Efforts have begun to populate Floreana Island with tortoises genetically similar to its historical inhabitants while balancing three potentially competing objectives – restoring ecosystem services (sustaining a high tortoise population size), maximizing genome representation of the extinctC. niger species and maintaining a genetically diverse population – under realistic cost constraints.C. niger genomemore »Synthesis and applications . Multi‐objective conservation translocations are likely to encounter complex trade‐offs and conflicts among programme objectives. Here, we developed a novel combination of modelling approaches to identify optimal management strategies. We found that solutions that simultaneously addressed multiple, competing objectives performed better than single‐objective solutions. Our model‐based decision support tool demonstrates that timely, cost‐effective solutions can be identified in cases where management objectives appear to be incompatible. -
Abstract To understand how migratory behavior evolved and to predict how migratory species will respond to global environmental change it is important to quantify the fitness consequences of intra‐ and inter‐individual variation in migratory behavior. Intra‐individual variation includes behavioral responses to changing environmental conditions and hence behavioral plasticity in the context of novel or variable conditions. Inter‐individual variation determines the degree of variation on which selection can act and the rate of evolutionary responses to changes in average and extreme environmental conditions. Here we focus on variation in the partial migratory behavior of giant Galápagos tortoises (
Chelonoidis spp.) and its energetic consequences. We evaluate the extent and mechanisms by which tortoises adjust migration timing in response to varying annual environmental conditions, and integrate movement data within a bioenergetic model of tortoise migration to quantify the fitness consequences of migration timing. We find strong inter‐individual variation in the timing of migration, which was not affected by environmental conditions prevailing at the time of migration but rather by average expectations estimated from multi‐annual averaged conditions. This variation is associated with an average annual loss in efficiency of ~15% relative to optimal timing based on year‐specific conditions. These results point towards a limited ability ofmore » -
Gopher Tortoise (Gopherus polyphemus) burrows support diverse commensal invertebrate communities that may be of special conservation interest. We investigated the impact of red imported fire ants (Solenopsis invicta) on the invertebrate burrow community at 10 study sites in southern Mississippi, sampling burrows (1998–2000) before and after bait treatments to reduce fire ant populations. We sampled invertebrates using an ant bait attractant for ants and burrow vacuums for the broader invertebrate community and calculated fire ant abundance, invertebrate abundance, species richness, and species diversity. Fire ant abundance in gopher tortoise burrows was reduced by >98% in treated sites. There was a positive treatment effect on invertebrate abundance, diversity, and species richness from burrow vacuum sampling which was not observed in ant sampling from burrow baits. Management of fire ants around burrows may benefit both threatened gopher tortoises by reducing potential fire ant predation on hatchlings, as well as the diverse burrow invertebrate community. Fire-ant management may also benefit other species utilizing tortoise burrows, such as the endangered Dusky Gopher Frog and Schaus swallowtail butterfly. This has implications for more effective biodiversity conservation via targeted control of the invasive fire ant at gopher tortoise burrows.
-
Anthropogenic environmental modification is placing as many as 1 million species at risk of extinction. One management action for reducing extinction risk is translocation of individuals to locations from which they have disappeared or to new locations where biologists hypothesize they have a good chance of surviving. To maximize this survival probability, the standard practice is to move animals from the closest possible populations that contain presumably related individuals. In an empirical test of this conventional wisdom, we analyzed a genomic dataset for 166 translocated desert tortoises (
Gopherus agassizii ) that either survived or died over a period of two decades. We used genomic data to infer the geographic origin of translocated tortoises and found that individual heterozygosity predicted tortoise survival, whereas translocation distance or geographic unit of origin did not. Our results suggest a relatively simple indicator of the likelihood of a translocated individual’s survival: heterozygosity. -
Abstract Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus
Gopherus . These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree.RNA ‐seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best‐fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any ofmore »