skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Quaternary megafauna extinctions altered body size distribution in tortoises
The late Quaternary is characterized by the extinction of many terrestrial megafauna, which included tortoises (Family: Testudinidae). However, limited information is available on how extinction shaped the phenotype of surviving taxa. Here, based on a global dataset of straight carapace length, we investigate the temporal variation, spatial distribution and evolution of tortoise body size over the past 23 million years, thereby capturing the effects of Quaternary extinctions in this clade. We found a significant change in body size distribution characterized by a reduction of both mean body size and maximum body size of extant tortoises relative to fossil taxa. This reduction of body size occurred earlier in mainland (Early Pleistocene 2.588–0.781 Ma) than in island tortoises (Late Pleistocene/Holocene 0.126–0 Ma). Despite contrasting body size patterns between fossil and extant taxa on a spatial scale, tortoise body size showed limited variation over time until this decline. Body size is a fundamental functional trait determining many aspects of species ecologies, with large tortoises playing key roles as ecosystem engineers. As such, the transition from larger sized to smaller sized classes indicated by our findings likely resulted in the homogenization of tortoises' ecological functions and diminished the role of tortoises in structuring the vegetation community.  more » « less
Award ID(s):
1241848 1950636
PAR ID:
10519254
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1987
ISSN:
0962-8452
Subject(s) / Keyword(s):
Late Quaternary Extinction size-biased extinction Testudines body size reduction carapace length trait variation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The monodactyl horses of the genus Equus originated in North America during the Pliocene, and from the beginning of the Pleistocene, they have been an essential part of the large ungulate communities of Europe, North America and Africa. Understanding how body size of Equus species evolved and varied in relation to changes in environments and diet thus forms an important part of understanding the dynamics of ungulate body size variation in relation to Pleistocene paleoenvironmental changes. Here we test previously published body mass estimation equations for the family Equidae by investigating how accurately different skeletal and dental measurements estimate the mean body mass (and body mass range) reported for extant Grevy’s zebra (Equus grevyi) and Burchell’s zebra (Equus quagga). Based on these tests and information on how frequently skeletal elements occur in the fossil record, we construct a hierarchy of best practices for the selection of body mass estimation equations in Equus. As a case study, we explore body size variation in Pleistocene European Equus paleopopulations in relation to diet and vegetation structure in their paleoenvironments. We show a relationship between diet and body size in Equus: very large-sized species tend to have more browse-dominated diets than small and medium-sized species, and paleovegetation proxies indicate on average more open and grass-rich paleoenvironments for small-sized, grazing species of Equus. When more than one species of Equus co-occur sympatrically, the larger species tend to be less abundant and have more browse-dominated diets than the smaller species. We suggest that body size variation in Pleistocene Equus was driven by a combined effect of resource quality and availability, partitioning of habitats and resources between species, and the effect of environmental openness and group size on the body size of individuals 
    more » « less
  2. Abstract BackgroundPonerine ants are almost exclusively predatory and comprise many of the largest known ant species. Within this clade, the genusNeoponerais among the most conspicuous Neotropical predators. We describe the first fossil member of this lineage: a worker preserved in Miocene-age Dominican amber from Hispaniola. ResultsNeoponera vejestoriasp. nov. demonstrates a clear case of local extinction—there are no known extantNeoponeraspecies in the Greater Antilles. The species is attributable to an extant and well-defined species group in the genus, which suggests the group is older than previously estimated. Through CT scan reconstruction and linear morphometrics, we reconstruct the morphospace of extant and fossil ants to evaluate the history and evolution of predatory taxa in this island system. ConclusionsThe fossil attests to a shift in insular ecological community structure since the Miocene. The largest predatory taxa have undergone extinction on the island, but their extant relatives persist throughout the Neotropics.Neoponera vejestoriasp. nov. is larger than all other predatory ant workers known from Hispaniola, extant or extinct. Our results empirically demonstrate the loss of a functional niche associated with body size, which is a trait long hypothesized to be related to extinction risk. 
    more » « less
  3. Abstract Larger body size has long been assumed to correlate with greater risk of extinction, helping to shape body-size distributions across the tree of life, but a lack of comprehensive size data for fossil taxa has left this hypothesis untested for most higher taxa across the vast majority of evolutionary time. Here we assess the relationship between body size and extinction using a data set comprising the body sizes, stratigraphic ranges, and occurrence patterns of 9408 genera of fossil marine animals spanning eight Linnaean classes across the past 485 Myr. We find that preferential extinction of smaller-bodied genera within classes is substantially more common than expected due to chance and that there is little evidence for preferential extinction of larger-bodied genera. Using a capture–mark–recapture analysis, we find that this size bias of extinction persists even after accounting for a pervasive bias against the sampling of smaller-bodied genera within classes. The size bias in extinction also persists after including geographic range as an additional predictor of extinction, indicating that correlation between body size and geographic range does not provide a simple explanation for the association between size and extinction. Regardless of the underlying causes, the preferential extinction of smaller-bodied genera across many higher taxa and most of geologic time indicates that the selective loss of large-bodied animals is the exception, rather than the rule, in the evolution of marine animals. 
    more » « less
  4. Eastern African terrestrial ecosystems in the Early Miocene are characterized by habitat heterogeneity resulting from local rifting, climate variation, and biogeography. These dynamic landscapes profoundly influenced the evolutionary trajectories of hominoids and other mammals. In western Kenya, a collection of Early Miocene fossil-rich sites (ca. 20 Ma) proximate to the extinct Tinderet Volcano, offers a unique window into understanding habitat preferences and ecological drivers to the evolution of hominoids. Here, we present data from one of the sites, Koru 16, with evidence of remarkably preserved fossil fauna, fossil leaves, tree stump casts, and paleosols, to provide invaluable insights into the ancient ecological dynamics of the region. We use multiple proxies to reconstruct the paleoclimate and paleoecology of the Koru 16 site. The lithofacies of the Koru 16 area are characterized as interbedded ash and weakly developed paleosols indicating episodic landscape disturbance from eruptions of the volcano followed by intervals of stability. Paleosol features together with paleoclimate estimates using two models based on elemental weathering (RF-MAP and PPM) indicate warm and wet conditions. More than 1000 fossil leaves collected from two stratigraphic locations at Koru 16 yielded seventeen morphotypes which were identified across both localities and displaying different distributions of morphotypes between them. The average leaf size of morphotypes form both localities is mesophyll to megaphyll and mean annual precipitation estimates using multiple leaf physiognomic methods indicate >2000 mm/yr. Leaf lifespan estimates derived from the leaf mass per area (MA) proxy suggest that the site was predominantly characterized by evergreen taxa, with limited deciduous taxa. The distribution of MA is consistent with tropical rainforests and tropical seasonal forests in equatorial Africa, indicating similarities in leaf characteristics and ecological patterns. Tree stump casts corroborate this observation, as they indicate an open forest, with density similar to modern tropical forests that support large-bodied primates. The fauna includes a medium- sized pythonid, and at least two species of apes, along with other mammalian taxa typical for the early Miocene. Our comprehensive paleoclimate and paleoecological analyses suggest that the Koru 16 site was very warm and wet, which is a climate conducive for a tropical seasonal forest transitioning into a rainforest biome. This environmental reconstruction underscores the broad distribution of Early Miocene apes in a variety of habitats, and calls into question a recent hypothesis that apes only lived in environments with a significant open component. 
    more » « less
  5. null (Ed.)
    Recent advances in genomics and palaeontology have begun to unravel the complex evolutionary history of the gray wolf, Canis lupus . Still, much of their phenotypic variation across time and space remains to be documented. We examined the limb morphology of the fossil and modern North American gray wolves from the late Quaternary (< ca 70 ka) to better understand their postcranial diversity through time. We found that the late-Pleistocene gray wolves were characterized by short-leggedness on both sides of the Cordilleran–Laurentide ice sheets, and that this trait survived well into the Holocene despite the collapse of Pleistocene megafauna and disappearance of the ‘Beringian wolf' from Alaska. By contrast, extant populations in the Midwestern USA and northwestern North America are distinguished by their elongate limbs with long distal segments, which appear to have evolved during the Holocene possibly in response to a new level or type of prey depletion. One of the consequences of recent extirpation of the Plains ( Canis lupus nubilus ) and Mexican wolves ( C. l. baileyi ) from much of the USA is an unprecedented loss of postcranial diversity through removal of short-legged forms. Conservation of these wolves is thus critical to restoration of the ecophenotypic diversity and evolutionary potential of gray wolves in North America. 
    more » « less