skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: X-Ray Coronal Properties of Swift/BAT-selected Seyfert 1 Active Galactic Nuclei
The corona is an integral component of active galactic nuclei (AGNs) which produces the bulk of the X-ray emission above 1-2 keV. However, many of its physical properties and the mechanisms powering this emission remain a mystery. In particular, the temperature of the coronal plasma has been difficult to constrain for large samples of AGNs, as constraints require high-quality broadband X-ray spectral coverage extending above 10 keV in order to measure the high-energy cutoff, which provides constraints on the combination of coronal optical depth and temperature. We present constraints on the coronal temperature for a large sample of Seyfert 1 AGNs selected from the Swift/BAT survey using high-quality hard X-ray data from the NuSTAR observatory combined with simultaneous soft X-ray data from Swift/XRT or XMM-Newton. When applying a physically motivated, nonrelativistic disk-reflection model to the X-ray spectra, we find a mean coronal temperature kT e = 84 ± 9 keV. We find no significant correlation between the coronal cutoff energy and accretion parameters such as the Eddington ratio and black hole mass. We also do not find a statistically significant correlation between the X-ray photon index, Γ, and Eddington ratio. This calls into question the use of such relations to infer properties of supermassive black hole systems.  more » « less
Award ID(s):
1715512
PAR ID:
10339300
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The astrophysical journal
Volume:
927
ISSN:
1538-4357
Page Range / eLocation ID:
42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The supermassive black holes (MBH∼ 106–1010M) that power luminous active galactic nuclei (AGNs), i.e., quasars, generally show a correlation between thermal disk emission in the ultraviolet (UV) and coronal emission in hard X-rays. In contrast, some “massive” black holes (mBHs;MBH∼ 105–106M) in low-mass galaxies present curious X-ray properties with coronal radiative output up to 100× weaker than expected. To examine this issue, we present a pilot study incorporating Very Large Array radio observations of a sample of 18 high-accretion-rate (Eddington ratiosLbol/LEdd> 0.1), mBH-powered AGNs (MBH∼ 106M) with Chandra X-ray coverage. Empirical correlations previously revealed in samples of radio-quiet, high-Eddington AGNs indicate that the radio–X-ray luminosity ratio,LR/LX, is approximately constant. Through multiwavelength analysis, we instead find that the X-ray-weaker mBHs in our sample tend toward larger values ofLR/LXeven though they remain radio-quiet per their optical–UV properties. This trend results in a tentative but highly intriguing correlation betweenLR/LXand X-ray weakness, which we argue is consistent with a scenario in which X-rays may be preferentially obscured from our line of sight by a “slim” accretion disk. We compare this observation to weak emission-line quasars (AGNs with exceptionally weak broad-line emission and a significant X-ray-weak fraction) and conclude by suggesting that our results may offer a new observational signature for finding high-accretion-rate AGNs. 
    more » « less
  2. Abstract We present the active galactic nucleus (AGN) catalog and optical spectroscopy for the second data release of the Swift BAT AGN Spectroscopic Survey (BASS DR2). With this DR2 release we provide 1449 optical spectra, of which 1182 are released for the first time, for the 858 hard-X-ray-selected AGNs in the Swift BAT 70-month sample. The majority of the spectra (801/1449, 55%) are newly obtained from Very Large Telescope (VLT)/X-shooter or Palomar/Doublespec. Many of the spectra have both higher resolution ( R > 2500, N ∼ 450) and/or very wide wavelength coverage (3200–10000 Å, N ∼ 600) that are important for a variety of AGN and host galaxy studies. We include newly revised AGN counterparts for the full sample and review important issues for population studies, with 47 AGN redshifts determined for the first time and 790 black hole mass and accretion rate estimates. This release is spectroscopically complete for all AGNs (100%, 858/858), with 99.8% having redshift measurements (857/858) and 96% completion in black hole mass estimates of unbeamed AGNs (722/752). This AGN sample represents a unique census of the brightest hard-X-ray-selected AGNs in the sky, spanning many orders of magnitude in Eddington ratio ( L / L Edd = 10 −5 –100), black hole mass ( M BH = 10 5 –10 10 M ⊙ ), and AGN bolometric luminosity ( L bol = 10 40 –10 47 erg s −1 ). 
    more » « less
  3. Context.The well-studied active galactic nucleus (AGN) 3C 273 displays characteristics of both jetted-AGNs and Seyfert galaxies, which makes it an excellent source to study the disc-jet connection in AGNs. Aims.We aim to investigate the disc-jet scenario in 3C 273 using broad-band (0.3–78 keV) X-ray spectra fromXMM-NewtonandNuSTAR. Methods.We used simultaneousXMM-NewtonandNuSTARobservations of 3C 273 carried out between 2012 and 2024. The 0.3–78 keV X-ray spectra were first fitted with a simple power law (PL) and then with the accretion-ejection-basedJeTCAFmodel. TheJeTCAFmodel accounts for emission from the jet, which extends up to the sonic surface. In this framework, a reflection hump above 10 keV can also arise due to the bulk motion Comptonization of coronal photons by the jet. Results.We find that the simple PL did not provide a good fit, leaving significant residuals at energies below 1.5 keV. All the spectra were fitted well by theJeTCAFmodel. The weighted-averaged black hole mass of (7.77 ± 0.30) × 108 Mobtained from theJeTCAFmodel is comparable with the previous estimates based on reverberation mapping observations and accretion disc models. Conclusions.The 0.3–78 keV X-ray emission of 3C 273 can be fit by the accretion-ejection-based model in which the corona and the jet on top of it make significant contributions to the X-ray flux. The Doppler boosting factor estimated from the jet flux ranges from 1.6 to 2.2, consistent with the lower limit from the literature. 
    more » « less
  4. Abstract Data derived from general relativistic magnetohydrodynamic simulations of accretion onto black holes can be used as input to a postprocessing scheme that predicts the radiated spectrum. Combining a relativistic Compton scattering radiation transfer solution in the corona with detailed local atmosphere solutions incorporating local ionization and thermal balance within the disk photosphere, it is possible to study both spectral formation and intrinsic spectral variability in the radiation from relativistic accretion disks. With this method, we find that radiatively efficient systems with black holes of 10Maccreting at ≈0.01 in Eddington units produce spectra very similar to those observed in the hard states of X-ray binaries. The spectral shape above 10 keV is well described by a power law with an exponential cutoff. Intrinsic turbulent variations lead to order-unity changes in bolometric luminosity, variations in the logarithmic spectral slope ∼0.1, and factor of 2 alterations in the cutoff energy on timescales ∼50 (MBH/10M) ms. Within the corona, the range of gas temperature spans more than 1 order of magnitude. The wide distribution of temperatures is central to defining the spectrum: the logarithmic spectral slope is harder by ∼0.3 and the cutoff energy larger by a factor ∼10–30 than if the coronal temperature everywhere were its mass-weighted mean. 
    more » « less
  5. Abstract We determine the low-redshift X-ray luminosity function, active black hole mass function (BHMF), and Eddington ratio distribution function (ERDF) for both unobscured (Type 1) and obscured (Type 2) active galactic nuclei (AGNs), using the unprecedented spectroscopic completeness of the BAT AGN Spectroscopic Survey (BASS) data release 2. In addition to a straightforward 1/ V max approach, we also compute the intrinsic distributions, accounting for sample truncation by employing a forward-modeling approach to recover the observed BHMF and ERDF. As previous BHMFs and ERDFs have been robustly determined only for samples of bright, broad-line (Type 1) AGNs and/or quasars, ours are the first directly observationally constrained BHMF and ERDF of Type 2 AGNs. We find that after accounting for all observational biases, the intrinsic ERDF of Type 2 AGNs is significantly more skewed toward lower Eddington ratios than the intrinsic ERDF of Type 1 AGNs. This result supports the radiation-regulated unification scenario, in which radiation pressure dictates the geometry of the dusty obscuring structure around an AGN. Calculating the ERDFs in two separate mass bins, we verify that the derived shape is consistent, validating the assumption that the ERDF (shape) is mass-independent. We report the local AGN duty cycle as a function of mass and Eddington ratio, by comparing the BASS active BHMF with the local mass function for all supermassive black holes. We also present the log N − log S of the Swift/BAT 70 month sources. 
    more » « less