skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BASS. XXII. The BASS DR2 AGN Catalog and Data
Abstract We present the active galactic nucleus (AGN) catalog and optical spectroscopy for the second data release of the Swift BAT AGN Spectroscopic Survey (BASS DR2). With this DR2 release we provide 1449 optical spectra, of which 1182 are released for the first time, for the 858 hard-X-ray-selected AGNs in the Swift BAT 70-month sample. The majority of the spectra (801/1449, 55%) are newly obtained from Very Large Telescope (VLT)/X-shooter or Palomar/Doublespec. Many of the spectra have both higher resolution ( R > 2500, N ∼ 450) and/or very wide wavelength coverage (3200–10000 Å, N ∼ 600) that are important for a variety of AGN and host galaxy studies. We include newly revised AGN counterparts for the full sample and review important issues for population studies, with 47 AGN redshifts determined for the first time and 790 black hole mass and accretion rate estimates. This release is spectroscopically complete for all AGNs (100%, 858/858), with 99.8% having redshift measurements (857/858) and 96% completion in black hole mass estimates of unbeamed AGNs (722/752). This AGN sample represents a unique census of the brightest hard-X-ray-selected AGNs in the sky, spanning many orders of magnitude in Eddington ratio ( L / L Edd = 10 −5 –100), black hole mass ( M BH = 10 5 –10 10 M ⊙ ), and AGN bolometric luminosity ( L bol = 10 40 –10 47 erg s −1 ).  more » « less
Award ID(s):
1751404
PAR ID:
10342962
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
261
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We determine the low-redshift X-ray luminosity function, active black hole mass function (BHMF), and Eddington ratio distribution function (ERDF) for both unobscured (Type 1) and obscured (Type 2) active galactic nuclei (AGNs), using the unprecedented spectroscopic completeness of the BAT AGN Spectroscopic Survey (BASS) data release 2. In addition to a straightforward 1/ V max approach, we also compute the intrinsic distributions, accounting for sample truncation by employing a forward-modeling approach to recover the observed BHMF and ERDF. As previous BHMFs and ERDFs have been robustly determined only for samples of bright, broad-line (Type 1) AGNs and/or quasars, ours are the first directly observationally constrained BHMF and ERDF of Type 2 AGNs. We find that after accounting for all observational biases, the intrinsic ERDF of Type 2 AGNs is significantly more skewed toward lower Eddington ratios than the intrinsic ERDF of Type 1 AGNs. This result supports the radiation-regulated unification scenario, in which radiation pressure dictates the geometry of the dusty obscuring structure around an AGN. Calculating the ERDFs in two separate mass bins, we verify that the derived shape is consistent, validating the assumption that the ERDF (shape) is mass-independent. We report the local AGN duty cycle as a function of mass and Eddington ratio, by comparing the BASS active BHMF with the local mass function for all supermassive black holes. We also present the log N − log S of the Swift/BAT 70 month sources. 
    more » « less
  2. The corona is an integral component of active galactic nuclei (AGNs) which produces the bulk of the X-ray emission above 1-2 keV. However, many of its physical properties and the mechanisms powering this emission remain a mystery. In particular, the temperature of the coronal plasma has been difficult to constrain for large samples of AGNs, as constraints require high-quality broadband X-ray spectral coverage extending above 10 keV in order to measure the high-energy cutoff, which provides constraints on the combination of coronal optical depth and temperature. We present constraints on the coronal temperature for a large sample of Seyfert 1 AGNs selected from the Swift/BAT survey using high-quality hard X-ray data from the NuSTAR observatory combined with simultaneous soft X-ray data from Swift/XRT or XMM-Newton. When applying a physically motivated, nonrelativistic disk-reflection model to the X-ray spectra, we find a mean coronal temperature kT e = 84 ± 9 keV. We find no significant correlation between the coronal cutoff energy and accretion parameters such as the Eddington ratio and black hole mass. We also do not find a statistically significant correlation between the X-ray photon index, Γ, and Eddington ratio. This calls into question the use of such relations to infer properties of supermassive black hole systems. 
    more » « less
  3. ABSTRACT We present a multiwavelength analysis of 28 of the most luminous low-redshift narrow-line, ultra-hard X-ray-selected active galactic nuclei (AGN) drawn from the 70-month Swift/BAT all-sky survey, with bolometric luminosities of $$\log (L_{\rm bol} /{\rm erg\, s}^{-1}) \gtrsim 45.25$$. The broad goal of our study is to determine whether these objects have any distinctive properties, potentially setting them aside from lower luminosity obscured AGN in the local Universe. Our analysis relies on the first data release of the BAT AGN Spectroscopic Survey (BASS/DR1) and on dedicated observations with the VLT, Palomar, and Keck observatories. We find that the vast majority of our sources agree with commonly used AGN selection criteria which are based on emission line ratios and on mid-infrared colours. Our AGN are pre-dominantly hosted in massive galaxies (9.8 ≲ log (M*/M⊙) ≲ 11.7); based on visual inspection of archival optical images, they appear to be mostly ellipticals. Otherwise, they do not have distinctive properties. Their radio luminosities, determined from publicly available survey data, show a large spread of almost four orders of magnitude – much broader than what is found for lower X-ray luminosity obscured AGN in BASS. Moreover, our sample shows no preferred combination of black hole masses (MBH) and/or Eddington ratio (λEdd), covering 7.5 ≲ log (MBH/M⊙) ≲ 10.3 and 0.01 ≲ λEdd ≲ 1. Based on the distribution of our sources in the λEdd−NH plane, we conclude that our sample is consistent with a scenario where the amount of obscuring material along the line of sight is determined by radiation pressure exerted by the AGN on the dusty circumnuclear gas. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present a spectroscopic and imaging study of an abnormal active galactic nucleus (AGN), 2MASX J00423991 + 3017515. This AGN is newly identified in the hard X-rays by the Swift BAT All-Sky survey and found in an edge-on disc galaxy interacting with a nearby companion. Here, we analyse the first optical spectra obtained for this system (taken in 2011 and 2016), high-resolution imaging taken with the Hubble Space Telescope and Chandra X-ray Observatory, and 1 imaging with the Very Large Array. Two unique properties are revealed: the peaks of the broad Balmer emission lines (associated with gas orbiting very near the supermassive black hole) are blueshifted from the corresponding narrow line emission and host galaxy absorption by 1540 km s−1, and the AGN is spatially displaced from the apparent centre of its host galaxy by 3.8 kpc. We explore several scenarios to explain these features, along with other anomalies, and propose that 2MASX J00423991 + 3017515 may be an AGN with an unusually strong wind residing in a uniquely configured major merger, or that it is an AGN recoiling from either a gravitational ‘slingshot’ in a three-body interaction or from a kick due to the asymmetric emission of gravitational waves following the coalescence of two progenitor supermassive black holes. 
    more » « less
  5. Context.Variability is a ubiquitous feature of active galactic nuclei (AGNs), and the characterisation of this variability is crucial to constraining its physical mechanism and proper applications in AGN studies. The advent of all-sky and high-cadence optical surveys allows more accurate measurements of AGN variability down to short timescales as well as direct comparisons with X-ray variability from the same sample of sources. Aims.We aim to analyse the optical power spectral density (PSD) of AGNs with measured X-ray PSDs. Methods.We used light curves from the All-Sky Automated Survey for SuperNovae (ASAS-SN) and the Transiting Exoplanet Survey Satellite (TESS) and used the Lomb-Scargle periodogram to obtain PSDs. The joint optical PSD is measured over up to six orders of magnitude in frequency space on timescales of minutes to a decade. We fitted either a damped random walk (DRW) or a broken power law (BPL) model to constrain the PSD model and break frequency. Results.We find a set of break frequencies (≲10−2day−1) from DRW and BPL fits that generally confirm previously reported correlations between break frequencies and the black hole mass. In addition, we find a second set of break frequencies at higher frequencies (> 10−2day−1). We observe a potential weak correlation between the high-frequency breaks with the X-ray break frequencies and the black hole mass. We further explored the dependence of the correlations on other AGN parameters, finding that adding X-ray, optical, or bolometric luminosity as the third correlation parameter can substantially improve the correlation significances. The newly identified high-frequency optical breaks can constrain different aspects of the physics of AGNs. 
    more » « less