skip to main content


Title: High Definition, Inexpensive, Underwater Mapping
In this paper we present a complete framework for Underwater SLAM utilizing a single inexpensive sensor. Over the recent years, imaging technology of action cameras is producing stunning results even under the challenging conditions of the underwater domain. The GoPro 9 camera provides high definition video in synchronization with an Inertial Measurement Unit (IMU) data stream encoded in a single mp4 file. The visual inertial SLAM framework is augmented to adjust the map after each loop closure. Data collected at an artificial wreck of the coast of South Carolina and in caverns and caves in Florida demonstrate the robustness of the proposed approach in a variety of conditions.  more » « less
Award ID(s):
1943205 2024741
PAR ID:
10339319
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
1113-1121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a systematic approach on realtime reconstruction of an underwater environment using Sonar, Visual, Inertial, and Depth data. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures, and the shadow contours. The proposed method utilizes the well defined edges between well lit areas and darkness to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a Visual SLAM system. Experimental results in an underwater cave at Ginnie Springs, FL, with a custommade underwater sensor suite demonstrate the performance of our system. This will enable more robust navigation of AUVs using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions. 
    more » « less
  2. This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization – one of the main problems affecting other packages in underwater domain – by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness. 
    more » « less
  3. This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.

     
    more » « less
  4. Methods for state estimation that rely on visual information are challenging on legged robots due to rapid changes in the viewing angle of onboard cameras. In this work, we show that by leveraging structure in the way that the robot locomotes, the accuracy of visual-inertial SLAM in these challenging scenarios can be increased. We present a method that takes advantage of the underlying periodic predictability often present in the motion of legged robots to improve the performance of the feature tracking module within a visual-inertial SLAM system. Our method performs multi-session SLAM on a single robot, where each session is responsible for mapping during a distinct portion of the robot’s gait cycle. Our method produces lower absolute trajectory error than several state-of-the-art methods for visual-inertial SLAM in both a simulated environment and on data collected on a quadrupedal robot executing dynamic gaits. On real-world bounding gaits, our median trajectory error was less than 35% of the error of the next best estimate provided by state-of-the-art methods. 
    more » « less
  5. null (Ed.)
    Visual-inertial SLAM is essential for robot navigation in GPS-denied environments, e.g. indoor, underground. Conventionally, the performance of visual-inertial SLAM is evaluated with open-loop analysis, with a focus on the drift level of SLAM systems. In this paper, we raise the question on the importance of visual estimation latency in closed-loop navigation tasks, such as accurate trajectory tracking. To understand the impact of both drift and latency on visualinertial SLAM systems, a closed-loop benchmarking simulation is conducted, where a robot is commanded to follow a desired trajectory using the feedback from visual-inertial estimation. By extensively evaluating the trajectory tracking performance of representative state-of-the-art visual-inertial SLAM systems, we reveal the importance of latency reduction in visual estimation module of these systems. The findings suggest directions of future improvements for visual-inertial SLAM. 
    more » « less