skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Integrated Recurrent Neural Network and Regression Model with Spatial and Climatic Couplings for Vector-borne Disease Dynamics
We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for vector-borne disease evolution. We take into account climate data and seasonality as external factors that correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme motivated by recommendation systems. The neighboring regions’ influence is modeled by a long short-term memory neural network. The integrated model is trained by stochastic gradient descent and tested on leishmaniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred. Our model out-performed ARIMA models across a number of regions with high infections, and an associated ablation study renders support to our modeling hypothesis and ideas.  more » « less
Award ID(s):
1924548 1952644
PAR ID:
10339405
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Pattern Recognition Applications and Methods
Page Range / eLocation ID:
505 to 510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define aCorrelation Modelthrough which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data. 
    more » « less
  2. The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and real-time forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latent spatial information. We trained and tested our model on COVID-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting especially in the regime of limited training data. 
    more » « less
  3. The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and realtime forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latent spatial information. We trained and tested our model on COVID-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting especially in the regime of limited training data. 
    more » « less
  4. Abstract Disease mapping is an important statistical tool used by epidemiologists to assess geographic variation in disease rates and identify lurking environmental risk factors from spatial patterns. Such maps rely upon spatial models for regionally aggregated data, where neighboring regions tend to exhibit similar outcomes than those farther apart. We contribute to the literature on multivariate disease mapping, which deals with measurements on multiple (two or more) diseases in each region. We aim to disentangle associations among the multiple diseases from spatial autocorrelation in each disease. We develop multivariate directed acyclic graphical autoregression models to accommodate spatial and inter‐disease dependence. The hierarchical construction imparts flexibility and richness, interpretability of spatial autocorrelation and inter‐disease relationships, and computational ease, but depends upon the order in which the cancers are modeled. To obviate this, we demonstrate how Bayesian model selection and averaging across orders are easily achieved using bridge sampling. We compare our method with a competitor using simulation studies and present an application to multiple cancer mapping using data from the Surveillance, Epidemiology, and End Results program. 
    more » « less
  5. Abstract ObjectivesRespiratory syncytial virus (RSV) is a significant cause of pediatric hospitalizations. This article aims to utilize multisource data and leverage the tensor methods to uncover distinct RSV geographic clusters and develop an accurate RSV prediction model for future seasons. Materials and MethodsThis study utilizes 5-year RSV data from sources, including medical claims, CDC surveillance data, and Google search trends. We conduct spatiotemporal tensor analysis and prediction for pediatric RSV in the United States by designing (i) a nonnegative tensor factorization model for pediatric RSV diseases and location clustering; (ii) and a recurrent neural network tensor regression model for county-level trend prediction using the disease and location features. ResultsWe identify a clustering hierarchy of pediatric diseases: Three common geographic clusters of RSV outbreaks were identified from independent sources, showing an annual RSV trend shifting across different US regions, from the South and Southeast regions to the Central and Northeast regions and then to the West and Northwest regions, while precipitation and temperature were found as correlative factors with the coefficient of determination R2≈0.5, respectively. Our regression model accurately predicted the 2022-2023 RSV season at the county level, achieving R2≈0.3 mean absolute error MAE < 0.4 and a Pearson correlation greater than 0.75, which significantly outperforms the baselines with P-values <.05. ConclusionOur proposed framework provides a thorough analysis of RSV disease in the United States, which enables healthcare providers to better prepare for potential outbreaks, anticipate increased demand for services and supplies, and save more lives with timely interventions. 
    more » « less