El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) anomaly skewness encapsulates the nonlinear processes of strong ENSO events and affects future climate projections. Yet, its response to CO2 forcing remains not well understood. Here, we find ENSO skewness hysteresis in a large ensemble CO2 removal simulation. The positive SST skewness in the central-to-eastern tropical Pacific gradually weakens (most pronounced near the dateline) in response to increasing CO2, but weakens even further once CO2 is ramped down. Further analyses reveal that hysteresis of the Intertropical Convergence Zone migration leads to more active and farther eastward-located strong eastern Pacific El Niño events, thus decreasing central Pacific ENSO skewness by reducing the amplitude of the central Pacific positive SST anomalies and increasing the scaling effect of the eastern Pacific skewness denominator, i.e., ENSO intensity, respectively. The reduction of eastern Pacific El Niño maximum intensity, which is constrained by the SST zonal gradient of the projected background El Niño-like warming pattern, also contributes to a reduction of eastern Pacific SST skewness around the CO2 peak phase. This study highlights the divergent responses of different strong El Niño regimes in response to climate change.
more »
« less
Toward Understanding El Niño Southern-Oscillation’s Spatiotemporal Pattern Diversity
The El Niño Southern Oscillation (ENSO) phenomenon, manifested by the great swings of large-scale sea surface temperature (SST) anomalies over the equatorial central to eastern Pacific oceans, is a major source of interannual global shifts in climate patterns and weather activities. ENSO’s SST anomalies exhibit remarkable spatiotemporal pattern diversity (STPD), with their spatial pattern diversity dominated by Central Pacific (CP) and Eastern Pacific (EP) El Niño events and their temporal diversity marked by different timescales and intermittency in these types of events. By affecting various Earth system components, ENSO and its STPD yield significant environmental, ecological, economic, and societal impacts over the globe. The basic dynamics of ENSO as a canonical oscillator generated by coupled ocean–atmosphere interactions in the tropical Pacific have been largely understood. A minimal simple conceptual model such as the recharge oscillator paradigm provides means for quantifying the linear and nonlinear seasonally modulated growth rate and frequency together with ENSO’s state-dependent noise forcing for understanding ENSO’s amplitude and periodicity, boreal winter-time phase locking, and warm/cold phase asymmetry. However, the dynamical mechanisms explaining the key features of ENSO STPD associated with CP and EP events remain to be better understood. This article provides a summary of the recent active research on the dynamics of ENSO STPD together with discussions on challenges and outlooks for theoretical, diagnostic, and numerical modeling approaches to advance our understanding and modeling of ENSO, its STPD, and their broad impacts.
more »
« less
- Award ID(s):
- 1813611
- PAR ID:
- 10339463
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 10
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The relationship between the equatorial Pacific warm water volume (WWV) and El Niño–Southern Oscillation (ENSO) sea surface temperature (SST) has varied considerably on decadal timescales. These changes are strongly related to the occurrence frequency of central Pacific (CP) ENSO events. While both eastern Pacific (EP) and CP ENSO events show clear signatures of WWV recharge/discharge, their phase‐lag relationships between WWV and Niño3.4 SST are different. The WWV usually leads the Niño3.4 SST by two to three seasons during EP ENSO, while the lead time is reduced to one season during CP ENSO. The different phase‐lag relationships can be explained by distinct periodicities of the two ENSO types. Hence, ENSO regime changes associated with decadal predominance of either EP or CP ENSO events can give rise to decadal variations in the statistical WWV‐ENSO SST relationship. We emphasize the importance of identifying these different ENSO types and potentially different ENSO regimes to assess ENSO predictability.more » « less
-
Abstract In around 1990, significant shifts occurred in the spatial pattern and temporal evolution of the El Niño‐Southern Oscillation (ENSO), with these shifts showing asymmetry between El Niño and La Niña phases. El Niño transitioned from the Eastern Pacific (EP) to the Central Pacific (CP) type, while La Niña's multi‐year (MY) events increased. These changes correlated with shifts in ENSO dynamics. Before 1990, El Niño was influenced by the Tropical Pacific (TP) ENSO dynamic, shifting to the Subtropical Pacific (SP) ENSO dynamic afterward, altering its spatial pattern. La Niña was influenced by the SP ENSO dynamic both before and after 1990 and has maintained the CP type. The strengthened SP ENSO dynamic since 1990, accompanied by enhanced precipitation efficiency during La Niña, make it easier for La Niña to transition into MY events. In contrast, there is no observed increase in precipitation efficiency during El Niño.more » « less
-
Abstract Atmospheric blocking events are persistent quasi‐stationary geopotential height anomalies that divert the jet stream from its climatological path in the mid‐ to high‐latitudes. Previous studies have found that different phases of the El Niño–Southern Oscillation (ENSO) influence the characteristics of blocking, but none have considered the spatial diversity of El Niño. In this study, we examine Northern Hemisphere blocking events with respect to the “Central Pacific” (CP) and “Eastern Pacific” (EP) flavors of El Niño in 83 years of ERA5 reanalysis. The two El Niño flavors have dissimilar patterns of forcing on atmospheric circulation that impact the strength and placement of the upper‐level jet stream, thus affecting blocking event frequency and duration. Significant contrasts in blocking characteristics between CP and EP years are disregarded when a single ENSO index is used, and we emphasize that El Niño flavors should be considered in future investigations of blocking and ENSO‐related variability.more » « less
-
Abstract El Niño events exhibit rich diversity in their spatial patterns, which can lead to distinct global impacts. Therefore, how El Niño pattern diversity will change in a warmer climate is one of the most critical issues for future climate projections. Based on the sixth Coupled Model Intercomparison Project simulations, we report an inter-model consensus on future El Niño diversity changes. Central Pacific (CP) El Niño events are projected to occur more frequently compared to eastern Pacific (EP) El Niño events. Concurrently, EP El Niño events are projected to increase in amplitude, leading to higher chances of extreme EP El Niño occurrences. We suggest that enhanced upper-ocean stability due to greenhouse warming can lead to a stronger surface-layer response for increasing positive feedbacks, more favorable excitation of CP El Niño. Whereas, enhanced nonlinear atmospheric responses to EP sea surface temperatures can lead to a higher probability of extreme EP El Niño.more » « less
An official website of the United States government

