Registering functions (curves) using time warpings (re-parameterizations) is central to many computer vision and shape analysis solutions. While traditional registration methods minimize penalized-L2 norm, the elastic Riemannian metric and square-root velocity functions (SRVFs) have resulted in significant improvements in terms of theory and practical performance. This solution uses the dynamic programming algorithm to minimize the L2 norm between SRVFs of given functions. However, the computational cost of this elastic dynamic programming framework – O(nT 2 k) – where T is the number of time samples along curves, n is the number of curves, and k < T is a parameter – limits its use in applications involving big data. This paper introduces a deep-learning approach, named SRVF Registration Net or SrvfRegNet to overcome these limitations. SrvfRegNet architecture trains by optimizing the elastic metric-based objective function on the training data and then applies this trained network to the test data to perform fast registration. In case the training and the test data are from different classes, it generalizes to the test data using transfer learning, i.e., retraining of only the last few layers of the network. It achieves the state-of-the-art alignment performance albeit at much reduced computational cost. We demonstrate the efficiency and efficacy of this framework using several standard curve datasets.
more »
« less
Shape Analysis of Functional Data with Elastic Partial Matching
Elastic Riemannian metrics have been used successfully for statistical treatments of functional and curve shape data. However, this usage suffers from a significant restriction: the function boundaries are assumed to be fixed and matched. Functional data often comes with unmatched boundaries, {\it e.g.}, in dynamical systems with variable evolution rates, such as COVID-19 infection rate curves associated with different geographical regions. Here, we develop a Riemannian framework that allows for partial matching, comparing, and clustering functions under phase variability {\it and} uncertain boundaries. We extend past work by (1) Defining a new diffeomorphism group G over the positive reals that is the semidirect product of a time-warping group and a time-scaling group; (2) Introducing a metric that is invariant to the action of G; (3) Imposing a Riemannian Lie group structure on G to allow for an efficient gradient-based optimization for elastic partial matching; and (4) Presenting a modification that, while losing the metric property, allows one to control the amount of boundary disparity in the registration. We illustrate this framework by registering and clustering shapes of COVID-19 rate curves, identifying basic patterns, minimizing mismatch errors, and reducing variability within clusters compared to previous methods.
more »
« less
- PAR ID:
- 10339554
- Date Published:
- Journal Name:
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- ISSN:
- 0162-8828
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Susceptibility to infectious diseases such as COVID-19 depends on how those diseases spread. Many studies have examined the decrease in COVID-19 spread due to reduction in travel. However, less is known about how much functional geographic regions, which capture natural movements and social interactions, limit the spread of COVID-19. To determine boundaries between functional regions, we apply community-detection algorithms to large networks of mobility and social-media connections to construct geographic regions that reflect natural human movement and relationships at the county level in the coterminous United States. We measure COVID-19 case counts, case rates, and case-rate variations across adjacent counties and examine how often COVID-19 crosses the boundaries of these functional regions. We find that regions that we construct using GPS-trace networks and especially commute networks have the lowest COVID-19 case rates along the boundaries, so these regions may reflect natural partitions in COVID-19 transmission. Conversely, regions that we construct from geolocated Facebook friendships and Twitter connections yield less effective partitions. Our analysis reveals that regions that are derived from movement flows are more appropriate geographic units than states for making policy decisions about opening areas for activity, assessing vulnerability of populations, and allocating resources. Our insights are also relevant for policy decisions and public messaging in future emergency situations.more » « less
-
Abstract The United States CDC defines a county metric of COVID-19 Community Levels to inform public health measures. We find that the COVID-19 Community Levels vary frequently over time, which may not be optimal for decision making. Alternative metric formulations that do not compromise predictive ability are shown to reduce variability.more » « less
-
We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derived the convergence rate condition by generalized Gamma calculus. Examples of the generalized Bochner’s formula are provided in the Heisenberg group, displacement group, and Martinet sub-Riemannian structure. We show that the generalized Bochner’s formula follows a generalized second-order calculus of Kullback–Leibler divergence in density space embedded with a sub-Riemannian-type optimal transport metric.more » « less
-
In this paper, we study a class of Riemannian metrics on the space of unparametrized curves and develop a method to compute geodesics with given boundary conditions. It extends previous works on this topic in several important ways. The model and resulting matching algorithm integrate within one common setting both the family of H 2 -metrics with constant coefficients and scale-invariant H 2 -metrics on both open and closed immersed curves. These families include as particular cases the class of first-order elastic metrics. An essential difference with prior approaches is the way that boundary constraints are dealt with. By leveraging varifold-based similarity metrics we propose a relaxed variational formulation for the matching problem that avoids the necessity of optimizing over the reparametrization group. Furthermore, we show that we can also quotient out finite-dimensional similarity groups such as translation, rotation and scaling groups. The different properties and advantages are illustrated through numerical examples in which we also provide a comparison with related diffeomorphic methods used in shape registration.more » « less
An official website of the United States government

