skip to main content


Title: Stability of Time-Invariant Extremum Seeking Control for Limit Cycle Minimization
This paper presents a time-invariant extremum seeking controller (ESC) for nonlinear autonomous systems with limit cycles. For this time-invariant ESC, we propose a method to prove the closed loop system has an asymptotically stable limit cycle. The method is based on a perturbation theorem for maps, and, unlike existing techniques that use averaging and singular perturbation tools, it is not limited to weakly nonlinear systems. We use a typical example system to show that our method does indeed establish asymptotic stability of the limit cycle with minimal amplitude. Utilizing the example, we provide a general guide for analytic computations that are required to apply our method. The corresponding Mathematica code is available as supplementary material.  more » « less
Award ID(s):
1916876
NSF-PAR ID:
10339555
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional perturbation-based extremum seeking control (ESC) employs a slow time-dependent periodic signal to find an optimum of an unknown plant. To ensure stability of the overall system, the ESC parameters are selected such that there is sufficient time-scale separation between the plant and the ESC dynamics. This approach is suitable when the plant operates at a fixed time-scale. In case the plant slows down during operation, the time-scale separation can be violated. As a result, the stability and performance of the overall system can no longer be guaranteed. In this paper, we propose an ESC for periodic systems, where the external time-dependent dither signal in conventional ESC is replaced with the periodic signals present in the plant, thereby making ESC time-invariant in nature. The advantage of using a state-based dither is that it inherently contains the information about the rate of the rhythmic task under control. Thus, in addition to maintaining time-scale separation at different plant speeds, the adaptation speed of a time-invariant ESC automatically changes, without changing the ESC parameters. We illustrate the effectiveness of the proposed time-invariant ESC with a Van der Pol oscillator example and present a stability analysis using averaging and singular perturbation theory. 
    more » « less
  2. Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function Q 1 * ( x ) that greatly simplifies and unifies the mathematical description of the oscillator’s spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function Q 1 * ( x ) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ 1 = μ 1 + iω 1 . The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω 1 and half-width μ 1 ; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω 1 ; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators. 
    more » « less
  3. Abstract

    M. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formalU(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete-time analog of Kruskal’s theory. Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit to rotations along aU(1)-action. When the limiting rotation is non-resonant, these maps admit formalU(1)-symmetries to all orders in perturbation theory. For Hamiltonian nearly periodic maps on exact presymplectic manifolds, we prove that the formalU(1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time extension of Noether’s theorem. When the unperturbedU(1)-orbits are contractible, we also find a discrete-time adiabatic invariant for mappings that are merely presymplectic, rather than Hamiltonian. As an application of the theory, we use it to develop a novel technique for geometric integration of non-canonical Hamiltonian systems on exact symplectic manifolds.

     
    more » « less
  4. In this work we present a systematic review of novel and interesting behaviour we have observed in a simplified model of a MEMS oscillator. The model is third order and nonlinear, and we expressit as a single ODE for a displacement variable. We find that a single oscillator exhibits limitcycles whose amplitude is well approximated by perturbation methods. Two coupled identicaloscillators have in-phase and out-of-phase modes as well as more complicated motions.Bothof the simple modes are stable in some regions of the parameter space while the bifurcationstructure is quite complex in other regions. This structure is symmetric; the symmetry is brokenby the introduction of detuning between the two oscillators. Numerical integration of the fullsystem is used to check all bifurcation computations. Each individual oscillator is based on a MEMS structure which moves within a laser-driven interference pattern. As the structure vibrates, it changes the interference gap, causing the quantity of absorbed light to change, producing a feedback loop between the motion and the absorbed light and resulting in a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting parametric feedback and structural damping, is investigated using Lindstedt's perturbation method. Conditions are derived on the parameters of the model for a limit cycle to exist. The original model of the MEMS oscillator consists of two equations: a second order ODE which describes the physical motion of a microbeam, and a first order ODE which describes the heat conduction due to the laser. Starting with these equations, we derive a single governing ODE which is of third order and which leads to the definition of a linear operator called the MEMS operator. The addition of nonlinear terms in the model is shown to produce limit cycle behavior. The differential equations of motion of the system of two coupled oscillators are numerically integrated for varying values of the coupling parameter. It is shown that the in-phase mode loses stability as the coupling parameter is reduced below a certain value, and is replaced by two new periodic motions which are born in a pitchfork bifurcation. Then as this parameter is further reduced, the form of the bifurcating periodic motions grows more complex, with yet additional bifurcations occurring. This sequence of bifurcations leads to a situation in which the only periodic motion is a stable out-of-phase mode. The complexity of the resulting sequence of bifurcations is illustrated through a series of diagrams based on numerical integration. 
    more » « less
  5. The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous fluid, which generates complex, time-dependent interfacial patterns through the Saffman–Taylor instability. The pattern formation process sensitively depends on the lifting speed and is still not fully understood. For some lifting speeds, such as linear or exponential speed, the instability is transient and the interface eventually shrinks as a circle. However, linear stability analysis suggests there exist shape invariant shrinking patterns if the gap $b(t)$ is increased more rapidly: $b(t)=\left (1-({7}/{2})\tau \mathcal {C} t\right )^{-{2}/{7}}$ , where $\tau$ is the surface tension and $\mathcal {C}$ is a function of the interface perturbation mode $k$ . Here, we use a spectrally accurate boundary integral method together with an efficient time adaptive rescaling scheme, which for the first time makes it possible to explore the nonlinear limiting dynamical behaviour of a vanishing interface. When the gap is increased at a constant rate, our numerical results quantitatively agree with experimental observations (Nase et al. , Phys. Fluids , vol. 23, 2011, 123101). When we use the shape invariant gap $b(t)$ , our nonlinear results reveal the existence of $k$ -fold dominant, one-dimensional, web-like networks, where the fractal dimension is reduced to almost unity at late times. We conclude by constructing a morphology diagram for pattern selection that relates the dominant mode $k$ of the vanishing interface and the control parameter $\mathcal {C}$ . 
    more » « less