Conventional perturbation-based extremum seeking control (ESC) employs a slow time-dependent periodic signal to find an optimum of an unknown plant. To ensure stability of the overall system, the ESC parameters are selected such that there is sufficient time-scale separation between the plant and the ESC dynamics. This approach is suitable when the plant operates at a fixed time-scale. In case the plant slows down during operation, the time-scale separation can be violated. As a result, the stability and performance of the overall system can no longer be guaranteed. In this paper, we propose an ESC for periodic systems, where the external time-dependent dither signal in conventional ESC is replaced with the periodic signals present in the plant, thereby making ESC time-invariant in nature. The advantage of using a state-based dither is that it inherently contains the information about the rate of the rhythmic task under control. Thus, in addition to maintaining time-scale separation at different plant speeds, the adaptation speed of a time-invariant ESC automatically changes, without changing the ESC parameters. We illustrate the effectiveness of the proposed time-invariant ESC with a Van der Pol oscillator example and present a stability analysis using averaging and singular perturbation theory.
more »
« less
Stability of Time-Invariant Extremum Seeking Control for Limit Cycle Minimization
This paper presents a time-invariant extremum seeking controller (ESC) for nonlinear autonomous systems with limit cycles. For this time-invariant ESC, we propose a method to prove the closed loop system has an asymptotically stable limit cycle. The method is based on a perturbation theorem for maps, and, unlike existing techniques that use averaging and singular perturbation tools, it is not limited to weakly nonlinear systems. We use a typical example system to show that our method does indeed establish asymptotic stability of the limit cycle with minimal amplitude. Utilizing the example, we provide a general guide for analytic computations that are required to apply our method. The corresponding Mathematica code is available as supplementary material.
more »
« less
- Award ID(s):
- 1916876
- PAR ID:
- 10339555
- Date Published:
- Journal Name:
- IEEE Transactions on Automatic Control
- ISSN:
- 0018-9286
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We devise a novel formulation and propose the concept of modal participation factors to nonlinear dynamical systems. The original definition of modal participation factors (or simply participation factors) provides a simple yet effective metric. It finds use in theory and practice, quantifying the interplay between states and modes of oscillation in a linear time-invariant (LTI) system. In this paper, with the Koopman operator framework, we present the results of participation factors for nonlinear dynamical systems with an asymptotically stable equilibrium point or limit cycle. We show that participation factors are defined for the entire domain of attraction, beyond the vicinity of an attractor, where the original definition of participation factors for LTI systems is a special case. Finally, we develop a numerical method to estimate participation factors using time series data from the underlying nonlinear dynamical system. The numerical method can be implemented by leveraging a well-established numerical scheme in the Koopman operator framework called dynamic mode decomposition.more » « less
-
Abstract This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.more » « less
-
Abstract We develop a general compactification framework to facilitate analysis of nonautonomous ODEs where nonautonomous terms decay asymptotically. The strategy is to compactify the problem: the phase space is augmented with a bounded but open dimension and then extended at one or both ends by gluing in flow-invariant subspaces that carry autonomous dynamics of the limit systems from infinity. We derive the weakest decay conditions possible for the compactified system to be continuously differentiable on the extended phase space. This enables us to use equilibria and other compact invariant sets of the limit systems from infinity to analyze the original nonautonomous problem in the spirit of dynamical systems theory. Specifically, we prove that solutions of interest are contained in unique invariant manifolds of saddles for the limit systems when embedded in the extended phase space. The uniqueness holds in the general case, that is even if the compactification gives rise to a centre direction and the manifolds become centre or centre-stable manifolds. A wide range of problems including pullback attractors, rate-induced critical transitions (R-tipping) and nonlinear wave solutions fit naturally into our framework, and their analysis can be greatly simplified by the compactification.more » « less
-
Abstract Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasi-periodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.more » « less
An official website of the United States government

