Accepted Manuscript:
Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning
Title: Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning
Abstract Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm 3 indiv −1 day −1 (usual temperature) to more »
0 mm 3 indiv −1 day −1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles. « less
Abstract. Although the depth of bioturbation can be estimated on the basisof ichnofabric, the timescale of sediment mixing (reworking) and irrigation(ventilation) by burrowers that affects carbonate preservation andbiogeochemical cycles is difficult to estimate in the stratigraphic record.However, pyrite linings on the interior of shells can be a signature of slowand shallow irrigation. They indicate that shells of molluscs initiallyinhabiting oxic sediment pockets were immediately and permanentlysequestered in reduced, iron-rich microenvironments within the mixed layer.Molluscan biomass-stimulated sulfate reduction and pyrite precipitation wasconfined to the location of decay under such conditions. A high abundance ofpyrite-lined shells in the stratigraphic record can thus be diagnostic oflimited exposure of organic tissues to O2 even when the seafloor isinhabited by abundant infauna disrupting and age-homogenizing sedimentaryfabric as in the present-day northern Adriatic Sea. Here, we reconstructthis sequestration pathway characterized by slow irrigation (1) by assessingpreservation and postmortem ages of pyrite-lined shells of theshallow-infaunal and hypoxia-tolerant bivalve Varicorbula gibba in sediment cores and (2) byevaluating whether an independently documented decline in the depth ofmixing, driven by high frequency of seasonal hypoxia during the 20thcentury, affected the frequency of pyrite-lined shells in the stratigraphicrecord of the northern Adriatic Sea. First, at prodelta sites with a highsedimentation rate, linings ofmore »pyrite framboids form rapidly in the upper5–10 cm as they already appear in the interiors of shells younger than 10 yearsand occur preferentially in well-preserved and articulated shells withperiostracum. Second, increments deposited in the early 20th centurycontain < 20 % of shells lined with pyrite at the Po prodelta and30 %–40 % at the Isonzo prodelta, whereas the late 20th centuryincrements possess 50 %–80 % of shells lined with pyrite at both locations.At sites with slow sedimentation rate, the frequency of pyrite linings islow (< 10 %–20 %). Surface sediments remained well mixed by depositand detritus feeders even in the late 20th century, thus maintainingthe suboxic zone with dissolved iron. The upcore increase in the frequencyof pyrite-lined shells thus indicates that the oxycline depth was reducedand bioirrigation rates declined during the 20th century. Wehypothesize that the permanent preservation of pyrite linings within theshells of V. gibba in the subsurface stratigraphic record was enabled by slowrecovery of infaunal communities from seasonal hypoxic events, leading tothe dominance of surficial sediment modifiers with low irrigation potential.The presence of very young and well-preserved pyrite-lined valves in theuppermost zones of the mixed layer indicates that rapid obrution by episodicsediment deposition is not needed for preservation of pyrite linings whensediment irrigation is transient and background sedimentation rates arenot low (here, exceeding ∼ 0.1 cm yr−1) and infaunal organismsdie at their living position within the sediment. Abundance ofwell-preserved shells lined by pyrite exceeding ∼ 10 % perassemblage in apparently well-mixed sediments in the deep-time stratigraphicrecord can be an indicator of inefficient bioirrigation. Fine-grainedprodelta sediments in the northern Adriatic Sea deposited since themid-20th century, with high preservation potential of reducedmicroenvironments formed within a mixed layer, can represent taphonomic andearly diagenetic analogues of deep-time skeletal assemblages with pyritelinings.« less
Hussain, Mir Zaman; Hamilton, Stephen; Robertson, G. Philip; Basso, Bruno(
)
Abstract
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may
leach legacy P from past cropland management.
Methods
Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements.
Other
Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1. annual precip_drainage 2. biomass_corn, perennial grasses 3. biomass_poplar 4. annual N leaching _vol-wtd conc 5. Summary_N leached 6. annual DOC leachin_vol-wtd conc 7. growing season length 8. correlation_nh4 VS no3 9. correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate Description year year of the observation crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G precipitation during growing period (milliMeter) precip_NG precipitation during non-growing period (milliMeter) drainage_G drainage during growing period (milliMeter) drainage_NG drainage during non-growing period (milliMeter) 2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Variate Description year year of the observation date day of the observation (mm/dd/yyyy) crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate each crop has four replicated plots, R1, R2, R3 and R4 station stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction Fraction of biomass biomass_plot biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate Description year year of the observation method methods of poplar biomass sampling date day of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground poplar diameter (milliMeter) at the ground diameter_at_15cm poplar diameter (milliMeter) at 15 cm height biomass_tree biomass per plot (Grams_Per_Tree) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc. Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc. Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 doc leached annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc. volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar). Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation growing season length growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date date of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc nh4 concentration (milliGrams_N_Per_Liter) no3 conc no3 concentration (milliGrams_N_Per_Liter) 9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation don don concentration (milliGrams_N_Per_Liter) no3 no3 concentration (milliGrams_N_Per_Liter) doc doc concentration (milliGrams_Per_Liter) More>>
Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m -2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m -2 ), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr -1 at the notch to 0.79 and 0.87 yr -1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L ∞ , von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, onmore »platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.« less
Whalen, M; O’Malley, K; Lowery, C; Rodriguez-Tovar, F; Morgan, J; Gulick, S.(
, Lunar and planetary science conference abstracts)
Introduction: IODP/ICDP Expedition 364 recovered core from 505.7-1334.7 m below the seafloor (mbsf) at Site M0077A (21.45° N, 89.95° W) atop the peak ring in the Chicxulub impact structure. The core penetrated Paleogene sedimentary rocks, impactrelated suevite, melt rock, and granitic basement [1]. Approximately 110 m of post-impact, hemipelagic and pelagic sedimentary rocks were recovered, ranging from middle Eocene (Ypresian) to basal Paleocene (Danian) in age [1]. The transition between suevite and basal Paleocene sedimentary rocks is a remarkable succession of fining upward gravel to sand-sized suevite (Unit 2A) overlain by laminated carbonate-rich siltstone (Unit 1G, “impact boundary cocktail” [2]) that records the settling of fine-grained material postimpact [1]. This study concentrates on the carbonaterich Paleocene sedimentary rocks of overlying Unit 1F [1]. The degree of bioturbation, or ichnofabric index (II) [3, 4], provides a semiquantitative estimate of the density of burrowing within sedminentary facies. Collection of II data within the context of facies analysis thus yields insight into the initial and then continued disturbance of sediment by burrowing organisms recording the return of life to the crater (Fig. 1). Unit 1G: The unit extends from 616.58-617.33 mbsf (Fig. 1) and consists mainly of dark brown to dark grayish brownmore »calcareous siltstone but is complex with several different lithologies and post-depositional pyrite nodules that disrupt bedding. The base of the unit is a sharp, stylolitized contact overlain by two ~1 cm thick, normally graded beds. Overlying, up to 617.17 mbsf, the siltstone contains internally finely laminated cm-scale beds that alternate between dark brown and grayish brown. Above, up to 616.97 mbsf is a package with mm bedded couplets of dark brown and grayish brown calcareous siltstone that grade upward into similarly colored cm bedded couplets that then thin upward into mm bedded couplets again. Above this interval bedding is indistinct and appears to be obscured by soft sediment deformation from 616.66- 616.97 mbsf. The upper part of the unit is slightly deformed with greenish marlstone and interbedded lighter gray siltstone displaying a distinct downwarp from 616.58-616.66 mbsf. Rare oval structures, that are potential individual burrows, occur down to 616.65 mbsf. Unit 1F: The unit records the remainder of the Paleocene and extends from 607.27-616.58 mbsf (Fig. 1). The base of the unit is a sharp contact at the base of a greenish claystone (II 2) that overlies Unit 1G [1]. It consists dominantly of interbedded light gray to light bluish gray wackestone and packstone (II 3-5) and light to dark bluish gray marlstone (II 2) at cm-dmscale. All lithologies contain wispy stylolites. The lower portion of the unit (616.58 and 607.74) is cyclic with cm-dm-scale bedding and light greenish-blue to bluish marlstone bases (II 2-3) that grade upward into light gray or light bluish gray wackestone and packstone (II 3-5). Contacts between lithologies are usually gradational due to burrowing. The upper portion of the unit from 610.25 to 607.74 mbsf is a light yellowish brown burrowed packstone (II 4) intercalated with gray marlstone (II 2). The uppermost 7.5 cm is calcite cemented with 1 cm wide burrows (II 3-4). Clasts are fine to coarse sand size and include foraminifera. The upper surface of this unit is a hardground and minor unconformity overlain by Eocene rocks [1]. Ichnofabric Index: II data provides a window onto the return of life post-impact (Fig. 1). Rare structures in the upper most sandy suevite (Unit 2A) and in Unit 1G (Core 40R-1) resemble bioturbation structures but may also represent fluid escape [1]. The first welldefined oval structures that appear to be burrows occur in the upper part of Unit 1G (Fig. 1, 616.58-616.65 mbsf). Unequivocal burrows (II 2) that disturb sedimentary facies occur just above, at 616.56 mbsf in Unit 1F (Fig. 1). II of 3-4 are reached 5-6 cm above indicating significant disruption of original sedimentary strutures. An II of 5 is first documented at 616.16 mbsf (Fig. 1). Above this level through the Paleocene succession II largely varies between 2 and 5 with rare laminated intervals (II 1). Bioturbation intensity correlates well with facies changes and more marly facies display lower levels of bioturbation than more carbonate- rich facies. This correlation implies a depth and/or paleoredox control on the distribution of bioturbating organisms. Discussion: II and the return of life: The II data indicate that burrowing organisms were likely reestablished in the crater before the end of deposition of Unit 1G. Biostratigraphic analyses document a mix of Late Cretaceous and earliest Danian taxa within Unit Lunar and Planetary Science XLVIII (2017) 1348.pdf 1G and lowermost Danian zone Pα documented in the lowermost part of Unit 1F down to 616.58 mbsf [1]. P1a taxa occur down to 616.29 mbsf with P1b-P4 recorded upward through 607.27 m [1]. Burrowing organisims were thus active by earliest Danian indicating a rapid return of life to the crater. Hydrocode modeling implies that much of the deformation and peak ring formation was completed within minutes of the impact [5]. Deposition and reworking of impact breccia by tsunami and seiches likely extended for several days [6]. More refined estimates for the return of life to the crater may be possible with more detailed analysis of the deposition of laminae within Unit 1G that records marine settling of fine-grained material that may have taken days to months.« less
Diaz, Miguel A.; Branch, Eric A.; Dunn, Jake; Brothers, Anthony; Jordan, Steve(
, Transactions of the annual meeting of the Orthopaedic Research Society)
INTRODUCTION: Quadriceps tendon autografts have experienced a rapid rise in popularity for anterior cruciate ligament (ACL) reconstruction due to advantages in graft sizing and potential improvement in biomechanics. While there is a growing body of literature on use of quadriceps tendon grafts, deeper investigation into the biomechanical properties of stitch techniques in this construct has been limited. The purpose of this study was to evaluate the performance of a novel suture needle against different conventional suture needles by comparing the biomechanical properties of two commonly used stitch methods, a whip stitch, and a locking stitch in quadriceps tendon. It was hypothesized that the new device would be capable of creating both whip stitches and locking stitches that are biomechanically equivalent to similar stitch techniques performed with conventional needle products. METHODS: This was a controlled biomechanical study. A total of 24 matched pair cadaveric knees were dissected and a total of 48 quadriceps tendons were harvested and tested. All tendon grafts were standardized to the same size. Samples were then randomized into the following groups, keeping the matched pairs together: (Group 1, n=16) consisted of Company W’s novel two-part suture needle design, (Group 2, n=16) consisted of Company A suture, andmore »(Group 3, n=16) consisted of Company B suture. For each group, the matched pairs were categorized into subgroups to be instrumented with either a whip stitch or a locking stitch. Two fellowship-trained surgeons performed all stitching, where they each instrumented 8 tendon grafts per group. For instrumentation, the grafts were clamped to a preparation stand in accordance with the manufacturer’s recommendations for passing each suture needle. A skin marker was used to identify and mark five evenly spaced points, 0.5 cm apart, as a guide to create a 5-stitch series. For Group 1, the whip stitch as well as the locking whip stitch were performed with a novel 2-part needle. For Group 2, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle. Similarly, for Group 3, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle (Figure 1). Cyclical testing was performed using a servohydraulic testing machine (MTS Bionix) equipped with a 5kN load cell. A standardized length of tendon, 7 cm, was coupled to the MTS actuator by passing it through a cryoclamp cooled by dry ice to a temperature of -5°C (Figure 2). All testing samples were then pre-conditioned to normalize viscoelastic effects and testing variability through application of cyclical loading to 25-100 N for three cycles. The samples were then held at 89 N for 15 minutes. Thereafter, the samples were loaded to 50-200 N for 500 cycles at 1 Hz. If samples survived, they were ramped to failure at 20 mm/min. Displacement and force data was collected throughout testing. Metrics of interest were total elongation (mm), stiffness (N/mm), ultimate failure load (N) and failure mode. Data are presented as averages plus/minus standard deviation. A one-way analysis of variance (ANOVA) with a Tukey pairwise comparison post hoc analysis was used to evaluate differences between the various stitching methods. Statistical significance was set at P = .05. RESULTS SECTION: For the whip stitch methods, the total elongation was found to be equivalent across all methods (W: 36 ± 10 mm; A: 32 ± 18 mm; B: 33 ± 8 mm). The stiffness of Company A (103 ± 11 N/mm) method was significantly larger than Company W (64 ± 8 N/mm; p=.001), whereas stiffness of whip stitch by Company W was equivalent to Company B (80 ± 32 N/mm). The ultimate failure load was equivalent across all whip stitch methods (W: 379 ± 31 mm; A: 412 ± 103 mm; B: 438 ± 63 mm). For the locking stitch method, the total elongation (W: 26 ± 10 mm; A: 14 ± 2 mm; B: 29 ± 5 mm), stiffness (W: 75 ± 11 N/mm; A: 104 ± 23 N/mm; B: 79 ± 10 N/mm) and ultimate load (W: 343 ± 22 N; A: 369 ± 30 N; B: 438 ± 63 N) were found to be equivalent across all methods. The failure mode for all groups is in Table 1. The common mode of failure across study groups and stitch configuration was suture breakage. However, the whip stitch from Company A and Company B had varied failure modes. DISCUSSION: Products from the three manufacturers were found to produce biomechanically equivalent whip stitches and locking stitches with respect to elongation and ultimate failure load. The only significant difference observed was that the whip stitch created with Company A’s product had a higher stiffness than Company W’s product, which could have been due to differences in the suture material. In this cadaveric quadriceps tendon model, it was shown that when using Company W’s novel two-part suture needle, users were capable of creating whip stitches and locking stitches that achieved equivalent biomechanical performance compared to similar stitch techniques performed with conventional needle products. A failure mode limited solely to suture breakage for methods completed with Company W’s needle product suggest a reliable suture construct with limited tissue damage. SIGNIFICANCE/CLINICAL RELEVANCE: Having a suture needle device with the versatility to easily perform different stitching constructs may provide surgeons an advantage needed to improve clinical outcomes. The data presented illustrates a strong new suture technique that has equivalent performance when compared to conventional needle devices and has promising applications in graft preparation for ligament and tendon reconstruction.« less
Deldicq, Noémie, Langlet, Dewi, Delaeter, Camille, Beaugrand, Grégory, Seuront, Laurent, and Bouchet, Vincent M. Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning. Retrieved from https://par.nsf.gov/biblio/10339628. Scientific Reports 11.1 Web. doi:10.1038/s41598-021-83311-z.
Deldicq, Noémie, Langlet, Dewi, Delaeter, Camille, Beaugrand, Grégory, Seuront, Laurent, & Bouchet, Vincent M. Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning. Scientific Reports, 11 (1). Retrieved from https://par.nsf.gov/biblio/10339628. https://doi.org/10.1038/s41598-021-83311-z
Deldicq, Noémie, Langlet, Dewi, Delaeter, Camille, Beaugrand, Grégory, Seuront, Laurent, and Bouchet, Vincent M.
"Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning". Scientific Reports 11 (1). Country unknown/Code not available. https://doi.org/10.1038/s41598-021-83311-z.https://par.nsf.gov/biblio/10339628.
@article{osti_10339628,
place = {Country unknown/Code not available},
title = {Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning},
url = {https://par.nsf.gov/biblio/10339628},
DOI = {10.1038/s41598-021-83311-z},
abstractNote = {Abstract Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm 3 indiv −1 day −1 (usual temperature) to 0 mm 3 indiv −1 day −1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.},
journal = {Scientific Reports},
volume = {11},
number = {1},
author = {Deldicq, Noémie and Langlet, Dewi and Delaeter, Camille and Beaugrand, Grégory and Seuront, Laurent and Bouchet, Vincent M.},
}