skip to main content

Title: Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning
Abstract Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm 3 indiv −1 day −1 (usual temperature) to more » 0 mm 3 indiv −1 day −1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles. « less
Authors:
; ; ; ; ;
Award ID(s):
1657887
Publication Date:
NSF-PAR ID:
10339628
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Although the depth of bioturbation can be estimated on the basisof ichnofabric, the timescale of sediment mixing (reworking) and irrigation(ventilation) by burrowers that affects carbonate preservation andbiogeochemical cycles is difficult to estimate in the stratigraphic record.However, pyrite linings on the interior of shells can be a signature of slowand shallow irrigation. They indicate that shells of molluscs initiallyinhabiting oxic sediment pockets were immediately and permanentlysequestered in reduced, iron-rich microenvironments within the mixed layer.Molluscan biomass-stimulated sulfate reduction and pyrite precipitation wasconfined to the location of decay under such conditions. A high abundance ofpyrite-lined shells in the stratigraphic record can thus be diagnostic oflimited exposure of organic tissues to O2 even when the seafloor isinhabited by abundant infauna disrupting and age-homogenizing sedimentaryfabric as in the present-day northern Adriatic Sea. Here, we reconstructthis sequestration pathway characterized by slow irrigation (1) by assessingpreservation and postmortem ages of pyrite-lined shells of theshallow-infaunal and hypoxia-tolerant bivalve Varicorbula gibba in sediment cores and (2) byevaluating whether an independently documented decline in the depth ofmixing, driven by high frequency of seasonal hypoxia during the 20thcentury, affected the frequency of pyrite-lined shells in the stratigraphicrecord of the northern Adriatic Sea. First, at prodelta sites with a highsedimentation rate, linings ofmore »pyrite framboids form rapidly in the upper5–10 cm as they already appear in the interiors of shells younger than 10 yearsand occur preferentially in well-preserved and articulated shells withperiostracum. Second, increments deposited in the early 20th centurycontain < 20 % of shells lined with pyrite at the Po prodelta and30 %–40 % at the Isonzo prodelta, whereas the late 20th centuryincrements possess 50 %–80 % of shells lined with pyrite at both locations.At sites with slow sedimentation rate, the frequency of pyrite linings islow (< 10 %–20 %). Surface sediments remained well mixed by depositand detritus feeders even in the late 20th century, thus maintainingthe suboxic zone with dissolved iron. The upcore increase in the frequencyof pyrite-lined shells thus indicates that the oxycline depth was reducedand bioirrigation rates declined during the 20th century. Wehypothesize that the permanent preservation of pyrite linings within theshells of V. gibba in the subsurface stratigraphic record was enabled by slowrecovery of infaunal communities from seasonal hypoxic events, leading tothe dominance of surficial sediment modifiers with low irrigation potential.The presence of very young and well-preserved pyrite-lined valves in theuppermost zones of the mixed layer indicates that rapid obrution by episodicsediment deposition is not needed for preservation of pyrite linings whensediment irrigation is transient and background sedimentation rates arenot low (here, exceeding ∼ 0.1 cm yr−1) and infaunal organismsdie at their living position within the sediment. Abundance ofwell-preserved shells lined by pyrite exceeding ∼ 10 % perassemblage in apparently well-mixed sediments in the deep-time stratigraphicrecord can be an indicator of inefficient bioirrigation. Fine-grainedprodelta sediments in the northern Adriatic Sea deposited since themid-20th century, with high preservation potential of reducedmicroenvironments formed within a mixed layer, can represent taphonomic andearly diagenetic analogues of deep-time skeletal assemblages with pyritelinings.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m -2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m -2 ), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr -1 at the notch to 0.79 and 0.87 yr -1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L ∞ , von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, onmore »platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.« less
  4. Introduction: IODP/ICDP Expedition 364 recovered core from 505.7-1334.7 m below the seafloor (mbsf) at Site M0077A (21.45° N, 89.95° W) atop the peak ring in the Chicxulub impact structure. The core penetrated Paleogene sedimentary rocks, impactrelated suevite, melt rock, and granitic basement [1]. Approximately 110 m of post-impact, hemipelagic and pelagic sedimentary rocks were recovered, ranging from middle Eocene (Ypresian) to basal Paleocene (Danian) in age [1]. The transition between suevite and basal Paleocene sedimentary rocks is a remarkable succession of fining upward gravel to sand-sized suevite (Unit 2A) overlain by laminated carbonate-rich siltstone (Unit 1G, “impact boundary cocktail” [2]) that records the settling of fine-grained material postimpact [1]. This study concentrates on the carbonaterich Paleocene sedimentary rocks of overlying Unit 1F [1]. The degree of bioturbation, or ichnofabric index (II) [3, 4], provides a semiquantitative estimate of the density of burrowing within sedminentary facies. Collection of II data within the context of facies analysis thus yields insight into the initial and then continued disturbance of sediment by burrowing organisms recording the return of life to the crater (Fig. 1). Unit 1G: The unit extends from 616.58-617.33 mbsf (Fig. 1) and consists mainly of dark brown to dark grayish brownmore »calcareous siltstone but is complex with several different lithologies and post-depositional pyrite nodules that disrupt bedding. The base of the unit is a sharp, stylolitized contact overlain by two ~1 cm thick, normally graded beds. Overlying, up to 617.17 mbsf, the siltstone contains internally finely laminated cm-scale beds that alternate between dark brown and grayish brown. Above, up to 616.97 mbsf is a package with mm bedded couplets of dark brown and grayish brown calcareous siltstone that grade upward into similarly colored cm bedded couplets that then thin upward into mm bedded couplets again. Above this interval bedding is indistinct and appears to be obscured by soft sediment deformation from 616.66- 616.97 mbsf. The upper part of the unit is slightly deformed with greenish marlstone and interbedded lighter gray siltstone displaying a distinct downwarp from 616.58-616.66 mbsf. Rare oval structures, that are potential individual burrows, occur down to 616.65 mbsf. Unit 1F: The unit records the remainder of the Paleocene and extends from 607.27-616.58 mbsf (Fig. 1). The base of the unit is a sharp contact at the base of a greenish claystone (II 2) that overlies Unit 1G [1]. It consists dominantly of interbedded light gray to light bluish gray wackestone and packstone (II 3-5) and light to dark bluish gray marlstone (II 2) at cm-dmscale. All lithologies contain wispy stylolites. The lower portion of the unit (616.58 and 607.74) is cyclic with cm-dm-scale bedding and light greenish-blue to bluish marlstone bases (II 2-3) that grade upward into light gray or light bluish gray wackestone and packstone (II 3-5). Contacts between lithologies are usually gradational due to burrowing. The upper portion of the unit from 610.25 to 607.74 mbsf is a light yellowish brown burrowed packstone (II 4) intercalated with gray marlstone (II 2). The uppermost 7.5 cm is calcite cemented with 1 cm wide burrows (II 3-4). Clasts are fine to coarse sand size and include foraminifera. The upper surface of this unit is a hardground and minor unconformity overlain by Eocene rocks [1]. Ichnofabric Index: II data provides a window onto the return of life post-impact (Fig. 1). Rare structures in the upper most sandy suevite (Unit 2A) and in Unit 1G (Core 40R-1) resemble bioturbation structures but may also represent fluid escape [1]. The first welldefined oval structures that appear to be burrows occur in the upper part of Unit 1G (Fig. 1, 616.58-616.65 mbsf). Unequivocal burrows (II 2) that disturb sedimentary facies occur just above, at 616.56 mbsf in Unit 1F (Fig. 1). II of 3-4 are reached 5-6 cm above indicating significant disruption of original sedimentary strutures. An II of 5 is first documented at 616.16 mbsf (Fig. 1). Above this level through the Paleocene succession II largely varies between 2 and 5 with rare laminated intervals (II 1). Bioturbation intensity correlates well with facies changes and more marly facies display lower levels of bioturbation than more carbonate- rich facies. This correlation implies a depth and/or paleoredox control on the distribution of bioturbating organisms. Discussion: II and the return of life: The II data indicate that burrowing organisms were likely reestablished in the crater before the end of deposition of Unit 1G. Biostratigraphic analyses document a mix of Late Cretaceous and earliest Danian taxa within Unit Lunar and Planetary Science XLVIII (2017) 1348.pdf 1G and lowermost Danian zone Pα documented in the lowermost part of Unit 1F down to 616.58 mbsf [1]. P1a taxa occur down to 616.29 mbsf with P1b-P4 recorded upward through 607.27 m [1]. Burrowing organisims were thus active by earliest Danian indicating a rapid return of life to the crater. Hydrocode modeling implies that much of the deformation and peak ring formation was completed within minutes of the impact [5]. Deposition and reworking of impact breccia by tsunami and seiches likely extended for several days [6]. More refined estimates for the return of life to the crater may be possible with more detailed analysis of the deposition of laminae within Unit 1G that records marine settling of fine-grained material that may have taken days to months.« less
  5. INTRODUCTION: Quadriceps tendon autografts have experienced a rapid rise in popularity for anterior cruciate ligament (ACL) reconstruction due to advantages in graft sizing and potential improvement in biomechanics. While there is a growing body of literature on use of quadriceps tendon grafts, deeper investigation into the biomechanical properties of stitch techniques in this construct has been limited. The purpose of this study was to evaluate the performance of a novel suture needle against different conventional suture needles by comparing the biomechanical properties of two commonly used stitch methods, a whip stitch, and a locking stitch in quadriceps tendon. It was hypothesized that the new device would be capable of creating both whip stitches and locking stitches that are biomechanically equivalent to similar stitch techniques performed with conventional needle products. METHODS: This was a controlled biomechanical study. A total of 24 matched pair cadaveric knees were dissected and a total of 48 quadriceps tendons were harvested and tested. All tendon grafts were standardized to the same size. Samples were then randomized into the following groups, keeping the matched pairs together: (Group 1, n=16) consisted of Company W’s novel two-part suture needle design, (Group 2, n=16) consisted of Company A suture, andmore »(Group 3, n=16) consisted of Company B suture. For each group, the matched pairs were categorized into subgroups to be instrumented with either a whip stitch or a locking stitch. Two fellowship-trained surgeons performed all stitching, where they each instrumented 8 tendon grafts per group. For instrumentation, the grafts were clamped to a preparation stand in accordance with the manufacturer’s recommendations for passing each suture needle. A skin marker was used to identify and mark five evenly spaced points, 0.5 cm apart, as a guide to create a 5-stitch series. For Group 1, the whip stitch as well as the locking whip stitch were performed with a novel 2-part needle. For Group 2, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle. Similarly, for Group 3, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle (Figure 1). Cyclical testing was performed using a servohydraulic testing machine (MTS Bionix) equipped with a 5kN load cell. A standardized length of tendon, 7 cm, was coupled to the MTS actuator by passing it through a cryoclamp cooled by dry ice to a temperature of -5°C (Figure 2). All testing samples were then pre-conditioned to normalize viscoelastic effects and testing variability through application of cyclical loading to 25-100 N for three cycles. The samples were then held at 89 N for 15 minutes. Thereafter, the samples were loaded to 50-200 N for 500 cycles at 1 Hz. If samples survived, they were ramped to failure at 20 mm/min. Displacement and force data was collected throughout testing. Metrics of interest were total elongation (mm), stiffness (N/mm), ultimate failure load (N) and failure mode. Data are presented as averages plus/minus standard deviation. A one-way analysis of variance (ANOVA) with a Tukey pairwise comparison post hoc analysis was used to evaluate differences between the various stitching methods. Statistical significance was set at P = .05. RESULTS SECTION: For the whip stitch methods, the total elongation was found to be equivalent across all methods (W: 36 ± 10 mm; A: 32 ± 18 mm; B: 33 ± 8 mm). The stiffness of Company A (103 ± 11 N/mm) method was significantly larger than Company W (64 ± 8 N/mm; p=.001), whereas stiffness of whip stitch by Company W was equivalent to Company B (80 ± 32 N/mm). The ultimate failure load was equivalent across all whip stitch methods (W: 379 ± 31 mm; A: 412 ± 103 mm; B: 438 ± 63 mm). For the locking stitch method, the total elongation (W: 26 ± 10 mm; A: 14 ± 2 mm; B: 29 ± 5 mm), stiffness (W: 75 ± 11 N/mm; A: 104 ± 23 N/mm; B: 79 ± 10 N/mm) and ultimate load (W: 343 ± 22 N; A: 369 ± 30 N; B: 438 ± 63 N) were found to be equivalent across all methods. The failure mode for all groups is in Table 1. The common mode of failure across study groups and stitch configuration was suture breakage. However, the whip stitch from Company A and Company B had varied failure modes. DISCUSSION: Products from the three manufacturers were found to produce biomechanically equivalent whip stitches and locking stitches with respect to elongation and ultimate failure load. The only significant difference observed was that the whip stitch created with Company A’s product had a higher stiffness than Company W’s product, which could have been due to differences in the suture material. In this cadaveric quadriceps tendon model, it was shown that when using Company W’s novel two-part suture needle, users were capable of creating whip stitches and locking stitches that achieved equivalent biomechanical performance compared to similar stitch techniques performed with conventional needle products. A failure mode limited solely to suture breakage for methods completed with Company W’s needle product suggest a reliable suture construct with limited tissue damage. SIGNIFICANCE/CLINICAL RELEVANCE: Having a suture needle device with the versatility to easily perform different stitching constructs may provide surgeons an advantage needed to improve clinical outcomes. The data presented illustrates a strong new suture technique that has equivalent performance when compared to conventional needle devices and has promising applications in graft preparation for ligament and tendon reconstruction.« less