skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Reconstructing decision trees
We give the first reconstruction algorithm for decision trees: given queries to a function f that is opt-close to a size-s decision tree, our algorithm provides query access to a decision tree T where: - T has size S := s^O((log s)²/ε³); - dist(f,T) ≤ O(opt)+ε; - Every query to T is answered with poly((log s)/ε)⋅ log n queries to f and in poly((log s)/ε)⋅ n log n time. This yields a tolerant tester that distinguishes functions that are close to size-s decision trees from those that are far from size-S decision trees. The polylogarithmic dependence on s in the efficiency of our tester is exponentially smaller than that of existing testers. Since decision tree complexity is well known to be related to numerous other boolean function properties, our results also provide a new algorithm for reconstructing and testing these properties.  more » « less
Award ID(s):
2006664
PAR ID:
10339651
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guruswami, Venkatesan (Ed.)
    Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1). 
    more » « less
  2. We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an O-tilde(\sqrt{n})-approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)-factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (non-tolerant) testing of monotonicity that can be done nonadaptively with O-tilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An α-erasure-resilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is ε-far from having the property. Our method yields the same lower bounds for unateness and being a k-junta. These lower bounds improve exponentially on the existing lower bounds for these properties. 
    more » « less
  3. We give the first agnostic, efficient, proper learning algorithm for monotone Boolean functions. Given 2O~(n√/ε) uniformly random examples of an unknown function f:{±1}n→{±1}, our algorithm outputs a hypothesis g:{±1}n→{±1} that is monotone and (opt +ε)-close to f, where opt is the distance from f to the closest monotone function. The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also 2O~(n√/ε), nearly matching the lower bound of [13]. We also give an algorithm for estimating up to additive error ε the distance of an unknown function f to monotone using a run-time of 2O~(n√/ε). Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity.This work builds upon the improper learning algorithm of [17] and the proper semiagnostic learning algorithm of [40], which obtains a non-monotone Boolean-valued hypothesis, then “corrects” it to monotone using query-efficient local computation algorithms on graphs. This black-box correction approach can achieve no error better than 2 opt +ε information-theoretically; we bypass this barrier bya)augmenting the improper learner with a convex optimization step, andb)learning and correcting a real-valued function before rounding its values to Boolean. Our real-valued correction algorithm solves the “poset sorting” problem of [40] for functions over general posets with non-Boolean labels. 
    more » « less
  4. Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results. For (1+ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully dynamic algorithm with O((log n)/ε) update and O(log n) query worst-case time. Further, we design a local computation algorithm that uses only O((log N)/ε) queries when all jobs are length at least 1 and have starting/ending times within [0,N]. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are poly(log n,1/ε). Equivalently, this is the first algorithm that maintains a (1+ε)-approximation of the maximum independent set of a collection of weighted intervals in poly(log n,1/ε) time updates/queries. This is an exponential improvement in 1/ε over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness. We also extend our approaches for interval scheduling on a single machine to examine the setting with M machines. 
    more » « less
  5. Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results. For (1+ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully dynamic algorithm with O((log n)/ε) update and O(log n) query worst-case time. Further, we design a local computation algorithm that uses only O((log N)/ε) queries when all jobs are length at least 1 and have starting/ending times within [0,N]. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are poly(log n,1/ε). Equivalently, this is the first algorithm that maintains a (1+ε)-approximation of the maximum independent set of a collection of weighted intervals in poly(log n,1/ε) time updates/queries. This is an exponential improvement in 1/ε over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness. We also extend our approaches for interval scheduling on a single machine to examine the setting with M machines. 
    more » « less