skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated extraction of revision events from keystroke data
Revision plays an important role in writing, and as revisions break down the linearity of the writing process, they are crucial in describing writing process dynamics. Keystroke logging and analysis have been used to identify revisions made during writing. Previous approaches include the manual annotation of revisions, building nonlinear S-notations, and the automated extraction of backspace keypresses. However, these approaches are time-intensive, vulnerable to construct, or restricted. Therefore, this article presents a computational approach to the automatic extraction of full revision events from keystroke logs, including both insertions and deletions, as well as the characters typed to replace the deleted text. Within this approach, revision candidates are first automatically extracted, which allows for a simplified manual annotation of revision events. Second, machine learning is used to automatically detect revision events. For this, 7120 revision events were manually annotated in a dataset of keystrokes obtained from 65 students conducting a writing task. The results showed that revision events could be automatically predicted with a relatively high accuracy. In addition, a case study proved that this approach could be easily applied to a new dataset. To conclude, computational approaches can be beneficial in providing automated insights into revisions in writing.  more » « less
Award ID(s):
2016868
PAR ID:
10339738
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Reading and Writing
ISSN:
0922-4777
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Writing and revision are abstract skills that can be challenging to teach to students. Automatic essay revision assistants offer to help in this area because they compare two drafts of a student's essay and analyze the revisions performed. For these assistants to be useful, they need to provide useful information such as whether the revisions are likely to lead to an improvement in the student's grade. It is necessary to better understand the connection between revisions and grade change so that this information could be displayed in an assistant. So, this work explores the relationship between the tf-idf cosine similarity of two essay drafts and resulting essay grade change. Prior work has demonstrated that identifying the revisions between drafts, then labeling each revision with the purpose behind why the revision was performed is useful to predicting grade change. However, this process is expensive because this sort of annotation is time-consuming for humans. Moreover, classifiers achieve lower accuracy than humans when predicting purposes. Using similarity measures instead of or as supplement to revision purposes may correct these issues, as similarity can be computed automatically and without the issue of classification accuracy. As such, the correlations between grade change and the similarity measure are compared to the correlations between grade change and revision purposes with the potential use-case of an automatic writing assistant in mind. Findings suggest tf-idf cosine similarity captures overall essay and overall grade change while revision purposes capture lighter changes that fix errors or cause the essay to read better. 
    more » « less
  2. East, Martin; Slomp, David (Ed.)
    Studies examining peer review demonstrate that students can learn from giving feedback to and receiving feedback from their peers, especially when they utilize information gained from the review process to revise. However, much of the research on peer review is situated within the literature regarding how students learn to write. With an increasing use of writing-to-learn in STEM classrooms, it is important to study how students engage in peer review for these types of writing assignments. This study sought to better understand how peer review and revision can support student learning for writing-to-learn specifically, using the lenses of cognitive perspectives of writing and engagement with written corrective feedback. Using a case study approach, we provide a detailed analysis of six students’ written artifacts in response to a writing-to-learn assignment that incorporated peer review and revision implemented in an organic chemistry course. Students demonstrated a range in the types of revisions they made and the extent to which the peer review process informed their revisions. Additionally, students exhibited surface, midlevel, and active engagement with the peer review and revision process. Considering the different engagement levels can inform how we frame peer review to students when using it as an instructional practice. 
    more » « less
  3. Dziri, Nouha; Ren, Sean; Diao, Shizhe (Ed.)
    The ability to revise essays in response to feedback is important for students’ writing success. An automated writing evaluation (AWE) system that supports students in revising their essays is thus essential. We present eRevise+RF, an enhanced AWE system for assessing student essay revisions (e.g., changes made to an essay to improve its quality in response to essay feedback) and providing revision feedback. We deployed the system with 6 teachers and 406 students across 3 schools in Pennsylvania and Louisiana. The results confirmed its effectiveness in (1) assessing student essays in terms of evidence usage, (2) extracting evidence and reasoning revisions across essays, and (3) determining revision success in responding to feedback. The evaluation also suggested eRevise+RF is a helpful system for young students to improve their argumentative writing skills through revision and formative feedback. 
    more » « less
  4. Abstract Scientific literature is one of the most significant resources for sharing knowledge. Researchers turn to scientific literature as a first step in designing an experiment. Given the extensive and growing volume of literature, the common approach of reading and manually extracting knowledge is too time consuming, creating a bottleneck in the research cycle. This challenge spans nearly every scientific domain. For the materials science, experimental data distributed across millions of publications are extremely helpful for predicting materials properties and the design of novel materials. However, only recently researchers have explored computational approaches for knowledge extraction primarily for inorganic materials. This study aims to explore knowledge extraction for organic materials. We built a research dataset composed of 855 annotated and 708,376 unannotated sentences drawn from 92,667 abstracts. We used named‐entity‐recognition (NER) with BiLSTM‐CNN‐CRF deep learning model to automatically extract key knowledge from literature. Early‐phase results show a high potential for automated knowledge extraction. The paper presents our findings and a framework for supervised knowledge extraction that can be adapted to other scientific domains. 
    more » « less
  5. Tang, P.; Grau, D.; El Asmar, M. (Ed.)
    Existing automated code checking (ACC) systems require the extraction of requirements from regulatory textual documents into computer-processable rule representations. The information extraction processes in those ACC systems are based on either human interpretation, manual annotation, or predefined automated information extraction rules. Despite the high performance they showed, rule-based information extraction approaches, by nature, lack sufficient scalability—the rules typically need some level of adaptation if the characteristics of the text change. Machine learning-based methods, instead of relying on hand-crafted rules, automatically capture the underlying patterns of the existing training text and have a great capability of generalizing to a variety of texts. A more scalable, machine learning-based approach is thus needed to achieve a more robust performance across different types of codes/documents for automatically generating semantically-enriched building-code sentences for the purpose of ACC. To address this need, this paper proposes a machine learning-based approach for generating semantically-enriched building-code sentences, which are annotated syntactically and semantically, for supporting IE. For improved robustness and scalability, the proposed approach uses transfer learning strategies to train deep neural network models on both general-domain and domain-specific data. The proposed approach consists of four steps: (1) data preparation and preprocessing; (2) development of a base deep neural network model for generating semantically-enriched building-code sentences; (3) model training using transfer learning strategies; and (4) model evaluation. The proposed approach was evaluated on a corpus of sentences from the 2009 International Building Code (IBC) and the Champaign 2015 IBC Amendments. The preliminary results show that the proposed approach achieved an optimal precision of 88%, recall of 86%, and F1-measure of 87%, indicating good performance. 
    more » « less