This content will become publicly available on July 6, 2023
- Award ID(s):
- 2054723
- Publication Date:
- NSF-PAR ID:
- 10339918
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 26
- Page Range or eLocation-ID:
- 7685 to 7706
- ISSN:
- 2041-6520
- Sponsoring Org:
- National Science Foundation
More Like this
-
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
-
The strong couplings between electronic states in conical intersection regions are among the most challenging problems in quantum chemistry. XMS-CASPT2, a second-order multireference quasidegenerate perturbation theory, has been successful in describing potential energy surfaces near the conical intersections. We have recently proposed a less expensive method for this problem, namely state-interaction pair-density functional theory (SI-PDFT), which considers the coupling between electronic states described by multiconfiguration pair-density functional theory (MC-PDFT). Here we test the accuracy of SI-PDFT for closely coupled potential energy surfaces of methylamine along five different reaction paths for N–H bond fission. We choose paths that pass close to a conical intersection of the ground and first excited states. We find that SI-PDFT predicts potential energy curves and energy splittings near the locally avoided crossing in close proximity to those obtained by XMS-CASPT2. This validates the method for application to photochemical simulations.
-
The molecules 1,4-cyclohexadiene (unconjugated 1,4-CHD) and 1,3-cyclohexadiene (conjugated 1,3-CHD) both have two double bonds, but these bonds interact in different ways. These molecules have long served as examples of through-bond and through-space interactions, respectively, and their electronic structures have been studied in detail both experimentally and theoretically, with the experimental assignments being especially complete. The existence of Rydberg states interspersed with the valence states makes the quantum mechanical calculation of their spectra a challenging task. In this work, we explore the electronic excitation energies of 1,4-CHD and 1,3-CHD for both valence and Rydberg states by means of complete active space second-order perturbation theory (CASPT2), extended multi-state CASPT2 (XMS-CASPT2), and multiconfiguration pair-density functional theory (MC-PDFT); it is shown by comparison to experiment that MC-PDFT yields the most accurate results. We found that the inclusion of Rydberg orbitals in the active space not only enables the calculation of Rydberg excitation energies but also improves the accuracy of the valence ones. A special characteristic of the present analysis is the calculation of the second moments of the excited-state orbitals. Because we find that the CASPT2 densities agree well with the CASSCF ones and since the MC-PDFT methods gets accurate excitation energies based onmore »
-
The f-block ab initio correlation consistent composite approach was used to predict the dissociation energies of lanthanide sulfides and selenides. Geometry optimizations were carried out using density functional theory and coupled cluster singles, doubles, and perturbative triples with one- and two-component Hamiltonians. For the two-component calculations, relativistic effects were accounted for by utilizing a third-order Douglas–Kroll–Hess Hamiltonian. Spin–orbit coupling was addressed with the Breit–Pauli Hamiltonian within a multireference configuration interaction approach. The state averaged complete active space self-consistent field wavefunctions obtained for the spin–orbit coupling energies were used to assign the ground states of diatomics, and several diagnostics were used to ascertain the multireference character of the molecules.
-
Abstract Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split
H 4andH 5and the degenerateH 6valence bands (VB) and the lowest degenerateH 6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH 6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along thec -axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These newmore »