This content will become publicly available on July 14, 2023
- Award ID(s):
- 1900086
- Publication Date:
- NSF-PAR ID:
- 10339924
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 2
- Page Range or eLocation-ID:
- 024105
- ISSN:
- 0021-9606
- Sponsoring Org:
- National Science Foundation
More Like this
-
The millimeter/submillimeter-wave spectrum of the SiP radical (X 2 Π i ) has been recorded using direct absorption spectroscopy in the frequency range of 151–532 GHz. SiP was synthesized in an AC discharge from the reaction of SiH 4 and gas-phase phosphorus, in argon carrier gas. Both spin–orbit ladders were observed. Fifteen rotational transitions were measured originating in the Ω = 3/2 ladder, and twelve in the Ω = 1/2 substate, each exhibiting lambda doubling and, at lower frequencies, hyperfine interactions from the phosphorus nuclear spin of I = 1/2. The lambda-doublets in the Ω = 1/2 levels appeared to be perturbed at higher J, with the f component deviating from the predicted pattern, likely due to interactions with the nearby excited A 2 Σ + electronic state, where ΔE Π-Σ ∼ 430 cm −1 . The data were analyzed using a Hund’s case a β Hamiltonian and rotational, spin–orbit, lambda-doubling, and hyperfine parameters were determined. A 2 Π/ 2 Σ deperturbation analysis was also performed, considering spin–orbit, spin-electronic, and L-uncoupling interactions. Although SiP is clearly not a hydride, the deperturbed parameters derived suggest that the pure precession hypothesis may be useful in assessing the 2 Π/ 2 Σ interaction. Interpretation ofmore »
-
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in themore »
-
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 nodemore »
-
Understanding the role of ferroelectric polarization in modulating the electronic and structural properties of crystals is critical for advancing these materials for overcoming various technological and scientific challenges. However, due to difficulties in performing experimental methods with the required resolution, or in interpreting the results of methods therein, the nanoscale morphology and response of these surfaces to external electric fields has not been properly elaborated. In this work we investigate the effect of ferroelectric polarization and local distortions in a BaTiO 3 perovskite, using two widely used computational approaches which treat the many-body nature of X-ray excitations using different philosophies, namely the many-body, delta-self-consistent-field determinant (mb-ΔSCF) and the Bethe–Salpeter equation (BSE) approaches. We show that in agreement with our experiments, both approaches consistently predict higher excitations of the main peak in the O–K edge for the surface with upward polarization. However, the mb-ΔSCF approach mostly fails to capture the L 2,3 separations at the Ti–L edge, due to the absence of spin–orbit coupling in Kohn–Sham density functional theory (KS-DFT) at the generalized gradient approximation level. On the other hand, and most promising, we show that application of the GW/BSE approach successfully reproduces the experimental XAS, both the relative peak intensitiesmore »
-
We develop a symmetry-based low-energy theory for monolayer \mathrm{WTe}_2 W T e 2 in its 1T ^{\prime} ′ phase, which includes eight bands (four orbitals, two spins). This modelreduces to the conventional four-band spin-degenerate Dirac model nearthe Dirac points of the material. We show that measurements of the spinsusceptibility, and of the magnitude and time dependence of theanomalous Hall conductivity induced by injected or equilibrium spinpolarization can be used to determine the magnitude and form of thespin-orbit coupling Hamiltonian, as well as the dimensionless tilt ofthe Dirac bands.