skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat
We describe a liquid-cryogen free cryostat with ultra-low vibration levels, which allows for continuous operation of a torsion balance at cryogenic temperatures. The apparatus uses a commercially available two-stage pulse-tube cooler and passive vibration isolation. The torsion balance exhibits torque noise levels lower than room temperature thermal noise by a factor of about four in the frequency range of 3–10 mHz, limited by residual seismic motion and by radiative heating of the pendulum body. In addition to lowering thermal noise below room-temperature limits, the low-temperature environment enables novel torsion balance experiments. Currently, the maximum duration of a continuous measurement run is limited by accumulation of cryogenic surface contamination on the optical elements inside the cryostat.  more » « less
Award ID(s):
1912380
PAR ID:
10339931
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
6
ISSN:
0034-6748
Page Range / eLocation ID:
064505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultralow-threshold coherent light emitters can be achieved through lasing from exciton-polariton condensates, but this generally requires sophisticated device structures and cryogenic temperatures. Polaritonic nanolasers operating at room temperature lie on the crucial path of related research, not only for the exploration of polariton physics at the nanoscale but also for potential applications in quantum information systems, all-optical logic gates, and ultralow-threshold lasers. However, at present, progress toward room temperature polariton nanolasers has been limited by the thermal instability of excitons and the inherently low quality factors of nanocavities. Here, we demonstrate room temperature polaritonic nanolasers by designing wide-gap semiconductor heterostructure nanocavities to produce thermally stable excitons coupled with nanocavity photons. The resulting mixed states of exciton polaritons with Rabi frequencies of approximately 370 meV enable persistent polariton lasing up to room temperature, facilitating the realization of miniaturized and integrated polariton systems. 
    more » « less
  2. na (Ed.)
    While low temperature NMR holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in E. coli DHFR at 105K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C’-15N correlation spectrum. For this unique amide we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin 114 ± 7 for the major peak, and 150 ± 8 and 164 ± 16° for the minor peak as contrasted with 118 for the X-ray crystal structure (and 118-130 for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low temperature NMR spectra. 
    more » « less
  3. PNAS (Ed.)
    While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Escherichia coli Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C’-15N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra. 
    more » « less
  4. The pursuit of room temperature quantum optomechanics with tethered nanomechanical resonators faces stringent challenges owing to extraneous mechanical degrees of freedom. An important example is thermal intermodulation noise (TIN), a form of excess optical noise produced by mixing of thermal noise peaks. While TIN can be decoupled from the phase of the optical field, it remains indirectly coupled via radiation pressure, implying a hidden source of backaction that might overwhelm shot noise. Here we report observation of TIN backaction in a high-cooperativity, room temperature cavity optomechanical system consisting of an acoustic-frequency Si3N4trampoline coupled to a Fabry–Perot cavity. The backaction we observe exceeds thermal noise by 20 dB and radiation pressure shot noise by 40 dB, despite the thermal motion being 10 times smaller than the cavity linewidth. Our results suggest that mitigating TIN may be critical to reaching the quantum regime from room temperature in a variety of contemporary optomechanical systems. 
    more » « less
  5. We present an optical tweezer array of 87Rb atoms housed in an cryogenic environment that successfully combines a 4-K cryopumping surface, a <50-K cold box surrounding the atoms, and a room-temperature high-numerical-aperture objective lens. We demonstrate a 3000-s atom-trap lifetime, which enables us to optimize and measure losses at the 10−4 level that arise during imaging and cooling, which are important to array rearrangement. We perform both ground-state qubit manipulation with an integrated microwave antenna and two-photon coherent Rydberg control, with the local electric field tuned to zero via inte- grated electrodes. We anticipate that the reduced blackbody radiation at the atoms from the cryogenic environment, combined with future electrical shielding, should decrease the rate of undesired transitions to nearby strongly interacting Rydberg states, which cause many-body loss and impede Rydberg gates. This low-vibration, high-optical-access cryogenic platform can be used with a wide range of optically trapped atomic or molecular species for applications in quantum computing, simulation, and metrology. 
    more » « less