skip to main content

Title: Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations
ABSTRACT We compare the star-forming main sequence (SFMS) of galaxies – both integrated and resolved on 1 kpc scales – between the high-resolution TNG50 simulation of IllustrisTNG and observations from the 3D-HST slitless spectroscopic survey at z ∼ 1. Contrasting integrated star formation rates (SFRs), we find that the slope and normalization of the star-forming main sequence in TNG50 are quantitatively consistent with values derived by fitting observations from 3D-HST with the Prospector Bayesian inference framework. The previous offsets of 0.2–1 dex between observed and simulated main-sequence normalizations are resolved when using the updated masses and SFRs from Prospector. The scatter is generically smaller in TNG50 than in 3D-HST for more massive galaxies with M*> 1010 M⊙, by ∼10–40 per cent, after accounting for observational uncertainties. When comparing resolved star formation, we also find good agreement between TNG50 and 3D-HST: average specific star formation rate (sSFR) radial profiles of galaxies at all masses and radii below, on, and above the SFMS are similar in both normalization and shape. Most noteworthy, massive galaxies with M*> 1010.5 M⊙, which have fallen below the SFMS due to ongoing quenching, exhibit a clear central SFR suppression, in both TNG50 and 3D-HST. In contrast, the original Illustris simulation and a variant TNG run without black hole kinetic wind feedback, do not reproduce the central SFR profile suppression seen in data. In TNG, inside-out quenching is due to the supermassive black hole (SMBH) feedback model operating at low accretion rates.  more » « less
Award ID(s):
2008490 1909933
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
219 to 235
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We use two independent galaxy-formation simulations, flares, a cosmological hydrodynamical simulation, and shark, a semi-analytic model, to explore how well the JWST will be able to uncover the existence and parameters of the star-forming main sequence (SFS) at z = 5 → 10, i.e. shape, scatter, normalization. Using two independent simulations allows us to isolate predictions (e.g. stellar mass, star formation rate, SFR, luminosity functions) that are robust to or highly dependent on the implementation of the physics of galaxy formation. Both simulations predict that JWST can observe ≥70–90 per cent (for shark and flares, respectively) of galaxies up to z ∼ 10 (down to stellar masses of ${\approx}10^{8.3}\rm M_{\odot }$ and SFRs of ${\approx}10^{0.5}{\rm M}_{\odot }\,{\rm yr}^{-1}$) in modest integration times and given current proposed survey areas (e.g. the Web COSMOS 0.6 deg2) to accurately constrain the parameters of the SFS. Although both simulations predict qualitatively similar distributions of stellar mass and SFR. There are important quantitative differences, such as the abundance of massive, star-forming galaxies with flares predicting a higher abundance than shark; the early onset of quenching as a result of black hole growth in flares (at z ≈ 8), not seen in shark until much lower redshifts; and the implementation of synthetic photometry with flares predicting more JWST-detected galaxies (∼90 per cent) than shark (∼70 per cent) at z = 10. JWST observations will distinguish between these models, leading to a significant improvement upon our understanding of the formation of the very first galaxies.

    more » « less

    Using adaptive optics with the Multi-Unit Spectroscopic Explorer on the Very Large Telescope, the Middle Ages Galaxy Properties with Integral Field Spectroscopy survey allows us to study the spatially resolved Universe at a crucial time of ∼4 Gyr ago (z ∼ 0.3) when simulations predict the greatest diversity in evolutionary pathways for galaxies. We investigate the radial trends in the star formation (SF) activity and luminosity-weighted stellar ages as a function of offset from the star-forming main sequence (SFMS) for a total of 294 galaxies. Using both Hα emission and the 4000 Å break (i.e. D4000) as star formation rate (SFR) tracers, we find overall flat radial profiles for galaxies lying on and above the SFMS, suggestive of physical processes that enhance/regulate SF throughout the entire galaxy disc. However, for galaxies lying below the SFMS, we find positive gradients in SF suggestive of inside–out quenching. Placing our results in context with results from other redshift regimes suggests an evolution in radial trends at z ∼ 0.3 for SF galaxies above the SFMS, from uniformly enhanced SF at z ∼ 1 and ∼ 0.3 to centrally enhanced SF at z ∼ 0 (when averaged over a wide range of mass). We also capture higher local SFRs for galaxies below the SFMS compared to that of z ∼ 0, which can be explained by a larger population of quenched satellites in the local Universe and/or different treatments of limitations set by the D4000–sSFR relation.

    more » « less

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

    more » « less
  4. Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR. 
    more » « less
  5. Abstract We describe the Studying Quenching in Intermediate- z Galaxies: Gas, angu L → ar momentum, and Evolution ( SQuIGG L ⃗ E ) survey of intermediate-redshift post-starburst galaxies. We leverage the large sky coverage of the Sloan Digital Sky Survey to select ∼ 1300 recently quenched galaxies at 0.5 < z ≤ 0.9 based on their unique spectral shapes. These bright, intermediate-redshift galaxies are ideal laboratories to study the physics responsible for the rapid quenching of star formation: they are distant enough to be useful analogs for high-redshift quenching galaxies, but low enough redshift that multiwavelength follow-up observations are feasible with modest telescope investments. We use the Prospector code to infer the stellar population properties and nonparametric star formation histories (SFHs) of all galaxies in the sample. We find that SQuIGG L ⃗ E galaxies are both very massive ( M * ∼ 10 11.25 M ⊙ ) and quenched, with inferred star formation rates ≲1 M ⊙ yr −1 , more than an order of magnitude below the star-forming main sequence. The best-fit SFHs confirm that these galaxies recently quenched a major burst of star formation: >75% of SQuIGG L ⃗ E galaxies formed at least a quarter of their total stellar mass in the recent burst, which ended just ∼200 Myr before observation. We find that SQuIGG L ⃗ E galaxies are on average younger and more burst-dominated than most other z ≲ 1 post-starburst galaxy samples. This large sample of bright post-starburst galaxies at intermediate redshift opens a wide range of studies into the quenching process. In particular, the full SQuIGG L ⃗ E survey will investigate the molecular gas reservoirs, morphologies, kinematics, resolved stellar populations, active galactic nucleus incidence, and infrared properties of this unique sample of galaxies in order to place definitive constraints on the quenching process. 
    more » « less