Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A major open question in astrophysics is the mechanisms by which massive black holes (BHs) form in the early Universe, which pose constraints on seeding models. We study BH formation and evolution in a flexible model combining the cosmological IllustrisTNG (TNG) simulations with semi-analytic modelling in post-processing. We identify our TNG model hosts based on various criteria including a minimum gas mass of $10^7$$–$$10^9$${\rm M}_{\odot }$$, total host mass of $$10^{8.5}$$–$$10^{10.5}$${\rm M}_{\odot }$$, and a maximum gas metallicity of 0.01–0.1 $$\mathrm{Z}_{\odot }$$. Each potential host is assigned a BH seed with a probability of 0.01–1. The populations follow the TNG galaxy merger tree. This approach improves upon the predictive power of the simple TNG BH seeding prescription, narrowing down plausible seeding parameter spaces, and it is readily adaptable to other cosmological simulations. Several model realizations predict $$z\lesssim 4$$ BH mass densities that are consistent with empirical data as well as the TNG BHs. However, high-redshift BH number densities can differ by factors of $$\sim$$ 10 to $$\gtrsim$$ 100 between seeding parameters. In most model realizations, $$\lesssim 10^5$${\rm M}_{\odot }$$ BHs substantially outnumber heavier BHs at high redshifts. Mergers between such BHs are prime targets for gravitational-wave detection with Laser Interferometer Space Antenna. The $z=0$ BH mass densities in most realizations of the model agree well with observations, but our strictest seeding criteria fail at high redshift. Our findings strongly motivate the need for better empirical constraints on high-z BHs, and they underscore the significance of recent active galactic nucleus discoveries with JWST.more » « less
-
ABSTRACT JWST has revealed a large population of accreting black holes (BHs) in the early Universe. Recent work has shown that even after accounting for possible systematic biases, the high-z$$M_*{\!-\!}M_{\rm \rm bh}$$ relation can be above the local scaling relation by $$\gt 3\sigma$$. To understand the implications of these overmassive high-z BHs, we study the BH growth at $$z\sim 4{\!-\!}7$$ using the $$[18~\mathrm{Mpc}]^3$$BRAHMA cosmological simulations with systematic variations of heavy seed models that emulate direct collapse black hole (DCBH) formation. In our least restrictive seed model, we place $$\sim 10^5~{\rm M}_{\odot }$$ seeds in haloes with sufficient dense and metal-poor gas. To model conditions for direct collapse, we impose additional criteria based on a minimum Lyman Werner flux (LW flux $$=10~J_{21}$$), maximum gas spin, and an environmental richness criterion. The high-z BH growth in our simulations is merger dominated, with a relatively small contribution from gas accretion. The simulation that includes all the above seeding criteria fails to reproduce an overmassive high-z$$M_*{\!-\!}M_{\rm bh}$$ relation consistent with observations (by factor of $$\sim 10$$ at $$z\sim 4$$). However, more optimistic models that exclude the spin and environment based criteria are able to reproduce the observed relations if we assume $$\lesssim 750~\mathrm{Myr}$$ delay times between host galaxy mergers and subsequent BH mergers. Overall, our results suggest that current JWST observations may be explained with heavy seeding channels if their formation is more efficient than currently assumed DCBH conditions. Alternatively, we may need higher initial seed masses, additional contributions from lighter seeds to BH mergers, and / or more efficient modes for BH accretion.more » « less
-
ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models.more » « less
-
ABSTRACT The physical origin of the seeds of supermassive black holes (SMBHs), with postulated initial masses ranging from ∼105 M⊙ to as low as ∼102 M⊙, is currently unknown. Most existing cosmological hydrodynamic simulations adopt very simple, ad hoc prescriptions for BH seeding and seed at unphysically high masses ∼105–106 M⊙. In this work, we introduce a novel sub-grid BH seeding model for cosmological simulations that is directly calibrated to high-resolution zoom simulations that explicitly resolve ∼103 M⊙ seeds forming within haloes with pristine, dense gas. We trace the BH growth along galaxy merger trees until their descendants reach masses of ∼104 or 105 M⊙. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gas-based seeding model. The baryonic properties of the host galaxies are well reproduced by the mass-based seeding criterion. The redshift-dependence of the mass-based criterion captures the combined influence of halo growth, dense gas formation, and metal enrichment on the formation of ∼103 M⊙ seeds. The environment-based seeding criterion seeds the descendants in rich environments with higher numbers of neighbouring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of low-mass seeding channels within next-generation larger volume uniform cosmological simulations.more » « less
-
Abstract Periodic signatures in time-domain observations of quasars have been used to search for binary supermassive black holes (SMBHs). These searches, across existing time-domain surveys, have produced several hundred candidates. The general stochastic variability of quasars, however, can masquerade as a false-positive periodic signal, especially when monitoring cadence and duration are limited. In this work, we predict the detectability of binary SMBHs in the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST). We apply computationally inexpensive sinusoidal curve fits to millions of simulated LSST Deep Drilling Field light curves of both single, isolated quasars and binary quasars. The period and phase of simulated binary signals can generally be disentangled from quasar variability. Binary amplitude is overestimated and poorly recovered for two-thirds of potential binaries due to quasar accretion variability. Quasars with strong intrinsic variability can obscure a binary signal too much for recovery. We also find that the most luminous quasars mimic current binary candidate light curves and their properties: The false-positive rates are 60% for these quasars. The reliable recovery of binary period and phase for a wide range of input binary LSST light curves is promising for multi-messenger characterization of binary SMBHs. However, pure electromagnetic detections of binaries using photometric periodicity with amplitude greater than 0.1 mag will result in samples that are overwhelmed by false positives. This paper represents an important and computationally inexpensive way forward for understanding the true and false-positive rates for binary candidates identified by Rubin.more » « less
-
ABSTRACT Massive black hole (MBH) binaries can form following a galaxy merger, but this may not always lead to a MBH binary merger within a Hubble time. The merger time-scale depends on how efficiently the MBHs lose orbital energy to the gas and stellar background, and to gravitational waves (GWs). In systems where these mechanisms are inefficient, the binary inspiral time can be long enough for a subsequent galaxy merger to bring a third MBH into the system. In this work, we identify and characterize the population of triple MBH systems in the Illustris cosmological hydrodynamic simulation. We find a substantial occurrence rate of triple MBH systems: in our fiducial model, 22 per cent of all binary systems form triples, and $$\gt 70{{\ \rm per\ cent}}$$ of these involve binaries that would not otherwise merge by z = 0. Furthermore, a significant subset of triples (6 per cent of all binaries, or more than a quarter of all triples) form a triple system at parsec scales, where the three BHs are most likely to undergo a strong three-body interaction. Crucially, we find that the rate of triple occurrence has only a weak dependence on key parameters of the binary inspiral model (binary eccentricity and stellar loss-cone refilling rate). We also do not observe strong trends in the host galaxy properties for binary versus triple MBH populations. Our results demonstrate the potential for triple systems to increase MBH merger rates, thereby enhancing the low-frequency GW signals detectable with pulsar timing arrays and with LISA.more » « less
-
Abstract Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.more » « less
-
Abstract Elongated bar-like features are ubiquitous in galaxies, occurring at the centers of approximately two-thirds of spiral disks in the nearby Universe. Due to gravitational interactions between the bar and the other components of galaxies, it is expected that angular momentum and matter will redistribute over long (Gyr) timescales in barred galaxies. Previous work ignoring the gas phase of galaxies has conclusively demonstrated that bars should slow their rotation over time due to their interaction with dark matter halos. We have performed a simulation of a Milky Way–like galactic disk hosting a strong bar, including a state-of-the-art model of the interstellar medium and a live dark matter halo. In this simulation, the bar pattern does not slow down over time, and instead it remains at a stable, constant rate of rotation. This behavior has been observed in previous simulations using more simplified models for the interstellar gas, but the apparent lack of secular evolution has remained unexplained. We find that the presence of the gas phase arrests the process by which the dark matter halo slows down a bar, a phenomenon we term bar locking. This locking is responsible for stabilizing the bar pattern speed. We find that, in a Milky Way–like disk, a gas fraction of only about 5% is necessary for this mechanism to operate. Our result naturally explains why nearly all observed bars rotate rapidly and is especially relevant for our understanding of how the Milky Way arrived at its present state.more » « less
-
Abstract We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array.more » « less
-
Abstract Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them.more » « less