- Editors:
- Raz, Ran
- Award ID(s):
- 1900460
- Publication Date:
- NSF-PAR ID:
- 10339962
- Journal Name:
- Theory of Computing
- Volume:
- 17
- Issue:
- 1
- Page Range or eLocation-ID:
- 1 to 88
- ISSN:
- 1557-2862
- Sponsoring Org:
- National Science Foundation
More Like this
-
We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve two open problems: • We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. • We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactlymore »
-
The stabilizer rank of a quantum state ψ is the minimal r such that | ψ ⟩ = ∑ j = 1 r c j | φ j ⟩ for c j ∈ C and stabilizer states φ j . The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the n -th tensor power of single-qubit magic states.We prove a lower bound of Ω ( n ) on the stabilizer rank of such states, improving a previous lower bound of Ω ( n ) of Bravyi, Smith and Smolin \cite{BSS16}. Further, we prove that for a sufficiently small constant δ , the stabilizer rank of any state which is δ -close to those states is Ω ( n / log n ) . This is the first non-trivial lower bound for approximate stabilizer rank.Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of F 2 n , and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolenskymore »
-
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ , by showing that$\mathcal { C}$ admits non-trivial satisfiability and/or$\mathcal { C}$ # SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial# SAT algorithm for a circuit class . Say that a symmetric Boolean function${\mathcal C}$ f (x 1,…,x n ) issparse if it outputs 1 onO (1) values of . We show that for every sparse${\sum }_{i} x_{i}$ f , and for all “typical” , faster$\mathcal { C}$ # SAT algorithms for circuits imply lower bounds against the circuit class$\mathcal { C}$ , which may be$f \circ \mathcal { C}$ stronger than itself. In particular:$\mathcal { C}$ # SAT algorithms forn k -size -circuits running in 2$\mathcal { C}$ n /n k time (for allk ) implyN E X P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ # SAT algorithms for -size$2^{n^{{\varepsilon }}}$ -circuits running in$\mathcal { C}$ time (for some$2^{n-n^{{\varepsilon }}}$ ε > 0) implyQ u a s i -N P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ Applying
# SAT algorithms from the literature, one immediate corollary of our results is thatQ u a s i -N P does not haveE M A J ∘A C C 0∘T H R circuits of polynomialmore » -
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer from a quantitative loss in parameters, and hence do not give nontrivial implications for models where we don't know super-polynomial lower bounds but do know lower bounds of a fixed polynomial. We show that when such lower bounds are proved using random restrictions, we can construct PRGs that are essentially best possible without in turn improving the lower bounds. More specifically, say that a circuit family has shrinkage exponent Gamma if a random restriction leaving a p fraction of variables unset shrinks the size of any circuit in the family by a factor of p^{Gamma + o(1)}. Our PRG uses a seed of length s^{1/(Gamma + 1) + o(1)} to fool circuits in the family of size s. By using this generic construction, we get PRGs with polynomially small error for the following classes of circuits of size s and with the following seed lengths: 1. For de Morgan formulas, seed length s^{1/3+o(1)}; 2. For formulas over an arbitrary basis, seed length s^{1/2+o(1)}; 3.more »
-
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer from a quantitative loss in parameters, and hence do not give nontrivial implications for models where we don’t know super-polynomial lower bounds but do know lower bounds of a fixed polynomial. We show that when such lower bounds are proved using random restrictions, we can construct PRGs which are essentially best possible without in turn improving the lower bounds. More specifically, say that a circuit family has shrinkage exponent Γ if a random restriction leaving a p fraction of variables unset shrinks the size of any circuit in the family by a factor of p Γ + o (1) . Our PRG uses a seed of length s 1/(Γ + 1) + o (1) to fool circuits in the family of size s . By using this generic construction, we get PRGs with polynomially small error for the following classes of circuits of size s and with the following seed lengths: (1) For de Morgan formulas, seed length s 1/3+ o (1) ; (2)more »