This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.
more »
« less
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Sit, Stand, and Walk with Minimal Tuning
Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis. Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching.
more »
« less
- Award ID(s):
- 2024237
- PAR ID:
- 10340009
- Date Published:
- Journal Name:
- Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
- ISSN:
- 2153-0858
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background After above-knee amputation, the missing biological knee and ankle are replaced with passive prosthetic devices. Passive prostheses are able to dissipate limited amounts of energy using resistive damper systems during “negative energy” tasks like sit-down. However, passive prosthetic knees are not able to provide high levels of resistance at the end of the sit-down movement when the knee is flexed, and users need the most support. Consequently, users are forced to over-compensate with their upper body, residual hip, and intact leg, and/or sit down with a ballistic and uncontrolled movement. Powered prostheses have the potential to solve this problem. Powered prosthetic joints are controlled by motors, which can produce higher levels of resistance at a larger range of joint positions than passive damper systems. Therefore, powered prostheses have the potential to make sitting down more controlled and less difficult for above-knee amputees, improving their functional mobility. Methods Ten individuals with above-knee amputations sat down using their prescribed passive prosthesis and a research powered knee-ankle prosthesis. Subjects performed three sit-downs with each prosthesis while we recorded joint angles, forces, and muscle activity from the intact quadricep muscle. Our main outcome measures were weight-bearing symmetry and muscle effort of the intact quadricep muscle. We performed paired t-tests on these outcome measures to test for significant differences between passive and powered prostheses. Results We found that the average weight-bearing symmetry improved by 42.1% when subjects sat down with the powered prosthesis compared to their passive prostheses. This difference was significant (p = 0.0012), and every subject’s weight-bearing symmetry improved when using the powered prosthesis. Although the intact quadricep muscle contraction differed in shape, neither the integral nor the peak of the signal was significantly different between conditions (integral p > 0.01, peak p > 0.01). Conclusions In this study, we found that a powered knee-ankle prosthesis significantly improved weight-bearing symmetry during sit-down compared to passive prostheses. However, we did not observe a corresponding decrease in intact-limb muscle effort. These results indicate that powered prosthetic devices have the potential to improve balance during sit-down for individuals with above-knee amputation and provide insight for future development of powered prosthetics.more » « less
-
Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion.more » « less
-
This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes. This work extends the notion of NHVCs for application to variable-cadence powered prostheses. Using the segmental conjugate momentum for the prosthesis, an optimization problem is used to design a single stance-phase NHVC for three distinct walking speed trajectories (slow, normal, and fast). This stance-phase controller is implemented with a holonomic swing phase controller on a powered knee-ankle prosthesis, and experiments are conducted with an able-bodied user walking in steady and non-steady velocity conditions. The control scheme is capable of representing 1) multiple, task-dependent reference trajectories, and 2) walking gait variance due to both temporal and kinematic changes in user motion.more » « less
-
Although there has been recent progress in control of multi-joint prosthetic legs for periodic tasks such as walking, volitional control of these systems for non-periodic maneuvers is still an open problem. In this paper, we develop a new controller that is capable of both periodic walking and common volitional leg motions based on a piecewise holonomic phase variable through a finite state machine. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact together with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of periodic and non-periodic tasks, including low- and high-speed walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. The proposed approach is expected to provide better understanding of volitional motions and lead to more reliable control of multi-joint prostheses for a wider range of tasks.more » « less