skip to main content

Title: Algorithms for Estimating Time-Locked Neural Response Components in Cortical Processing of Continuous Speech
Objective: The Temporal Response Function (TRF) is a linear model of neural activity time-locked to continuous stimuli, including continuous speech. TRFs based on speech envelopes typically have distinct components that have provided remarkable insights into the cortical processing of speech. However, current methods may lead to less than reliable estimates of single-subject TRF components. Here, we compare two established methods, in TRF component estimation, and also propose novel algorithms that utilize prior knowledge of these components, bypassing the full TRF estimation. Methods: We compared two established algorithms, ridge and boosting, and two novel algorithms based on Subspace Pursuit (SP) and Expectation Maximization (EM), which directly estimate TRF components given plausible assumptions regarding component characteristics. Single-channel, multi-channel, and source-localized TRFs were fit on simulations and real magnetoencephalographic data. Performance metrics included model fit and component estimation accuracy. Results: Boosting and ridge have comparable performance in component estimation. The novel algorithms outperformed the others in simulations, but not on real data, possibly due to the plausible assumptions not actually being met. Ridge had slightly better model fits on real data compared to boosting, but also more spurious TRF activity. Conclusion: Results indicate that both smooth (ridge) and sparse (boosting) algorithms perform comparably at TRF component estimation. The SP and EM algorithms may be accurate, but rely on assumptions of component characteristics. Significance: This systematic comparison establishes the suitability of widely used and novel algorithms for estimating robust TRF components, which is essential for improved subject-specific investigations into the cortical processing of speech.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Biomedical Engineering
Page Range / eLocation ID:
1 to 9
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The magnetoencephalography (MEG) response to continuous auditory stimuli, such as speech, is commonly described using a linear filter, the auditory temporal response function (TRF). Though components of the sensor level TRFs have been well characterized, the underlying neural sources responsible for these components are not well understood. In this work, we provide a unified framework for determining the TRFs of neural sources directly from the MEG data, by integrating the TRF and distributed forward source models into one, and casting the joint estimation task as a Bayesian optimization problem. Though the resulting problem emerges as non-convex, we propose efficient solutions that leverage recent advances in evidence maximization. We demonstrate the effectiveness of the resulting algorithm in both simulated and experimentally recorded MEG data from humans. 
    more » « less
  2. Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression usingtemporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses. 
    more » « less
  3. Primary auditory cortex is a critical stage in the human auditory pathway, a gateway between subcortical and higher-level cortical areas. Receiving the output of all subcortical processing, it sends its output on to higher-level cortex. Non-invasive physiological recordings of primary auditory cortex using electroencephalography (EEG) and magnetoencephalography (MEG), however, may not have sufficient specificity to separate responses generated in primary auditory cortex from those generated in underlying subcortical areas or neighboring cortical areas. This limitation is important for investigations of effects of top-down processing (e.g., selective-attention-based) on primary auditory cortex: higher-level areas are known to be strongly influenced by top-down processes, but subcortical areas are often assumed to perform strictly bottom-up processing. Fortunately, recent advances have made it easier to isolate the neural activity of primary auditory cortex from other areas. In this perspective, we focus on time-locked responses to stimulus features in the high gamma band (70–150 Hz) and with early cortical latency (∼40 ms), intermediate between subcortical and higher-level areas. We review recent findings from physiological studies employing either repeated simple sounds or continuous speech, obtaining either a frequency following response (FFR) or temporal response function (TRF). The potential roles of top-down processing are underscored, and comparisons with invasive intracranial EEG (iEEG) and animal model recordings are made. We argue that MEG studies employing continuous speech stimuli may offer particular benefits, in that only a few minutes of speech generates robust high gamma responses from bilateral primary auditory cortex, and without measurable interference from subcortical or higher-level areas. 
    more » « less
  4. null (Ed.)
    Aging is associated with an exaggerated representation of the speech envelope in auditory cortex. The relationship between this age-related exaggerated response and a listener’s ability to understand speech in noise remains an open question. Here, information-theory-based analysis methods are applied to magnetoencephalography recordings of human listeners, investigating their cortical responses to continuous speech, using the novel nonlinear measure of phase-locked mutual information between the speech stimuli and cortical responses. The cortex of older listeners shows an exaggerated level of mutual information, compared with younger listeners, for both attended and unattended speakers. The mutual information peaks for several distinct latencies: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). For the late component, the neural enhancement of attended over unattended speech is affected by stimulus signal-to-noise ratio, but the direction of this dependency is reversed by aging. Critically, in older listeners and for the same late component, greater cortical exaggeration is correlated with decreased behavioral inhibitory control. This negative correlation also carries over to speech intelligibility in noise, where greater cortical exaggeration in older listeners is correlated with worse speech intelligibility scores. Finally, an age-related lateralization difference is also seen for the ∼100 ms latency peaks, where older listeners show a bilateral response compared with younger listeners’ right lateralization. Thus, this information-theory-based analysis provides new, and less coarse-grained, results regarding age-related change in auditory cortical speech processing, and its correlation with cognitive measures, compared with related linear measures. NEW & NOTEWORTHY Cortical representations of natural speech are investigated using a novel nonlinear approach based on mutual information. Cortical responses, phase-locked to the speech envelope, show an exaggerated level of mutual information associated with aging, appearing at several distinct latencies (∼50, ∼100, and ∼200 ms). Critically, for older listeners only, the ∼200 ms latency response components are correlated with specific behavioral measures, including behavioral inhibition and speech comprehension. 
    more » « less
  5. Summary Flexible estimation of heterogeneous treatment effects lies at the heart of many statistical applications, such as personalized medicine and optimal resource allocation. In this article we develop a general class of two-step algorithms for heterogeneous treatment effect estimation in observational studies. First, we estimate marginal effects and treatment propensities to form an objective function that isolates the causal component of the signal. Then, we optimize this data-adaptive objective function. The proposed approach has several advantages over existing methods. From a practical perspective, our method is flexible and easy to use: in both steps, any loss-minimization method can be employed, such as penalized regression, deep neural networks, or boosting; moreover, these methods can be fine-tuned by cross-validation. Meanwhile, in the case of penalized kernel regression, we show that our method has a quasi-oracle property. Even when the pilot estimates for marginal effects and treatment propensities are not particularly accurate, we achieve the same error bounds as an oracle with prior knowledge of these two nuisance components. We implement variants of our approach based on penalized regression, kernel ridge regression, and boosting in a variety of simulation set-ups, and observe promising performance relative to existing baselines. 
    more » « less