- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1638957
- Publication Date:
- NSF-PAR ID:
- 10340203
- Journal Name:
- Journal of low temperature physics
- ISSN:
- 1573-7357
- Sponsoring Org:
- National Science Foundation
More Like this
-
The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detectormore »
-
Abstract The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲
θ ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASSQ -band (40 GHz),W -band (90 GHz), and dichroicG -band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales. -
We present the design and performance of broadband and tunable infrared-blocking filters for millimeter and submillimeter astronomy composed of small scattering particles embedded in an aerogel substrate. The ultralow-density (typically
) aerogel substrate provides an index of refraction as low as 1.05, removing the need for antireflection coatings and allowing for broadband operation from DC to above 1 THz. The size distribution of the scattering particles can be tuned to provide a variable cutoff frequency. Aerogel filters with embedded high-resistivity silicon powder are being produced at 40 cm diameter to enable large-aperture cryogenic receivers for cosmic microwave background polarimeters, which require large arrays of sub-Kelvin detectors in their search for the signature of an inflationary gravitational-wave background. -
Abstract We report on the design and performance of the B
icep3 instrument and its first three-year data set collected from 2016 to 2018. Bicep3 is a 52 cm aperture refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95 GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing ∼10× higher optical throughput compared to theKeck design. Bicep3 achieved instrument noise equivalent temperatures of 9.2, 6.8, and 7.1 and reached StokesQ andU map depths of 5.9, 4.4, and 4.4μ K arcmin in 2016, 2017, and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8μ K arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95 GHz. -
Abstract We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
ℓ < 40° in Galactic longitude and ∣b ∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of Hii regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact Hii contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be usedmore »