The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design.
In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests.
I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments.
more »
« less
This content will become publicly available on December 1, 2024
BICEP Array: 150 GHz Detector Module Development
The Background Imaging of Cosmic Extragalactic Polarization (BICEP)/Keck (BK) collaboration is currently leading the quest for the highest-sensitivity measurements of the polarized cosmic microwave background (CMB) anisotropies on a degree scale with a series of cryogenic telescopes, of which BICEP Array (BA) is the latest Stage-3 upgrade with a total of ∼ 32,000 detectors. The instrument comprises 4 receivers spanning 30-270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor-to-scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. This paper describes the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first stage of superconducting quantum interference device amplifiers is crucial to maintaining a stable bias current on the detectors. A novel multi-layer FR4 Printed Circuit Board with superconducting traces, capable of reading out up to 648 detectors, is detailed along with its validation tests. An ultra-high-density TDM detector module concept we developed for a CMB-S4-like experiment that allows up to 1920 detectors to be read out is also presented. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs, and overall maturity of the architecture. The heritage for TDM is rooted in mm- and sub-mm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments.
more »
« less
- NSF-PAR ID:
- 10524560
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Low Temperature Physics
- Volume:
- 213
- Issue:
- 5-6
- ISSN:
- 0022-2291
- Page Range / eLocation ID:
- 317 to 326
- Subject(s) / Keyword(s):
- Cosmology B-mode polarization Cosmic microwave background BICEP array Time division multiplexing Transition edge sensor
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The next two receivers, BA2 and BA3, are currently being assembled and will map the southern sky at frequencies ranging from 95 GHz to 150 GHz. Common to all BA receivers is a refractive, on-axis, cryogenic optical design that focuses microwave radiation onto a focal plane populated with antenna-coupled bolometers. High-performance antireflective coatings up to 760 mm in aperture are needed for each element in the optical chain, and must withstand repeated thermal cycles down to 4 K. Here we present the design and fabrication of the 30/40 GHz anti-reflection coatings for the recently deployed BA1 receiver, then discuss laboratory measurements of their reflectance. We review the lamination method for these single- and dual-layer plastic coatings with indices matched to various polyethylene, nylon and alumina optics. We also describe ongoing efforts to optimize coatings for the next BA cryostats, which may inform technological choices for future Small-Aperture Telescopes of the CMB "Stage 4" experiment.more » « less
-
Time-division multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high-frequency receivers, observing at 150 GHz and 220/270 GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard multichannel electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates time-division multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and cross talk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with time-division/SQUID-based readout for an even larger number of detectors.more » « less
-
The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined instrument components based on designs from field-proven instruments. The Precursor Small Aperture Telescope (PreSAT) is envisioned as an early step to this next generation, which will test prototype CMB-S4 components and technologies within an existing Bicep Array receiver, with the aim of enabling full-stack laboratory testing and early risk retirement, along with direct correlation of laboratory component-level performance measurements with deployed system performance. The instrument will utilize new 95/155 GHz dichroic dual-linear-polarization prototype detectors developed for CMB-S4, cooled to 100mK via the installation of an adiabatic demagnetization refrigerator, along with a prototype readout chain and prototype optics manufactured with wide-band anti-reflection coatings. The experience gained by integrating, deploying, and calibrating PreSAT will also help inform planning for CMB-S4 small aperture telescope commissioning, calibration, and operations well in advance of the fabrication of CMB-S4 production hardware.more » « less