Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2 , we find evidence that these variants respond to viral infection. These variants likely drive the locus’ impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5 . These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
more »
« less
Genetic Loci Associated With COVID-19 Positivity and Hospitalization in White, Black, and Hispanic Veterans of the VA Million Veteran Program
SARS-CoV-2 has caused symptomatic COVID-19 and widespread death across the globe. We sought to determine genetic variants contributing to COVID-19 susceptibility and hospitalization in a large biobank linked to a national United States health system. We identified 19,168 (3.7%) lab-confirmed COVID-19 cases among Million Veteran Program participants between March 1, 2020, and February 2, 2021, including 11,778 Whites, 4,893 Blacks, and 2,497 Hispanics. A multi-population genome-wide association study (GWAS) for COVID-19 outcomes identified four independent genetic variants (rs8176719, rs73062389, rs60870724, and rs73910904) contributing to COVID-19 positivity, including one novel locus found exclusively among Hispanics. We replicated eight of nine previously reported genetic associations at an alpha of 0.05 in at least one population-specific or the multi-population meta-analysis for one of the four MVP COVID-19 outcomes. We used rs8176719 and three additional variants to accurately infer ABO blood types. We found that A, AB, and B blood types were associated with testing positive for COVID-19 compared with O blood type with the highest risk for the A blood group. We did not observe any genome-wide significant associations for COVID-19 severity outcomes among those testing positive. Our study replicates prior GWAS findings associated with testing positive for COVID-19 among mostly White samples and extends findings at three loci to Black and Hispanic individuals. We also report a new locus among Hispanics requiring further investigation. These findings may aid in the identification of novel therapeutic agents to decrease the morbidity and mortality of COVID-19 across all major ancestral populations.
more »
« less
- PAR ID:
- 10340238
- Date Published:
- Journal Name:
- Frontiers in Genetics
- Volume:
- 12
- ISSN:
- 1664-8021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks.more » « less
-
Epstein, Michael P. (Ed.)We introduce pleiotropic association test (PAT) for joint analysis of multiple traits using genome-wide association study (GWAS) summary statistics. The method utilizes the decomposition of phenotypic covariation into genetic and environmental components to create a likelihood ratio test statistic for each genetic variant. Though PAT does not directly interpret which trait(s) drive the association, a per trait interpretation of the omnibus p-value is provided through an extension to the meta-analysis framework, m-values. In simulations, we show PAT controls the false positive rate, increases statistical power, and is robust to model misspecifications of genetic effect. Additionally, simulations comparing PAT to three multi-trait methods, HIPO, MTAG, and ASSET, show PAT identified 15.3% more omnibus associations over the next best method. When these associations were interpreted on a per trait level using m-values, PAT had 37.5% more true per trait interpretations with a 0.92% false positive assignment rate. When analyzing four traits from the UK Biobank, PAT discovered 22,095 novel variants. Through the m-values interpretation framework, the number of per trait associations for two traits were almost tripled and were nearly doubled for another trait relative to the original single trait GWAS.more » « less
-
Abstract The emergence of resistance to azithromycin complicates treatment ofNeisseria gonorrhoeae, the etiologic agent of gonorrhea. Substantial azithromycin resistance remains unexplained after accounting for known resistance mutations. Bacterial genome-wide association studies (GWAS) can identify novel resistance genes but must control for genetic confounders while maintaining power. Here, we show that compared to single-locus GWAS, conducting GWAS conditioned on known resistance mutations reduces the number of false positives and identifies a G70D mutation in the RplD 50S ribosomal protein L4 as significantly associated with increased azithromycin resistance (p-value = 1.08 × 10−11). We experimentally confirm our GWAS results and demonstrate that RplD G70D and other macrolide binding site mutations are prevalent (present in 5.42% of 4850 isolates) and widespread (identified in 21/65 countries across two decades). Overall, our findings demonstrate the utility of conditional associations for improving the performance of microbial GWAS and advance our understanding of the genetic basis of macrolide resistance.more » « less
-
Abstract The genome‐wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type‐I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective‐risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption‐free model built upon data‐consistent inversion (DCI), which is a recently developed measure‐theoretic framework utilized for uncertainty quantification. This proposed DCI‐derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI‐derived model to cover all genetic variants without emphasizing on additivity of the classic‐GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type‐I error rate at least as well as the classic‐GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.more » « less
An official website of the United States government

