Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes.more » « lessFree, publicly-accessible full text available May 24, 2026
- 
            Abstract Chronic overlapping pain conditions (COPCs) affect a wide population and incur a substantial disease burden including comorbid mental disorders. Although these comorbidities have been extensively documented, the longitudinal trajectories of their onset, particularly for those with three or more conditions, have been rarely studied. We conducted retrospective cohort studies to identify statistically significant COPCs and mental health trajectories in the All of Us Research Program (AoU v8, 338,170 persons) and the Mayo Data Warehouse (3,957,444 individuals). For each trajectory, cases were matched with controls by demographic factors. Logistic regression was then applied to assess the increased likelihood of the final condition given the prior conditions in that sequence. The significant trajectories were visualized as a “pain forest.” More than 88% of trajectories identified from AoU (Male: 78, Female: 361) were reproducible in the Mayo Data Warehouse data (Male: 361, Female: 1286), with female trajectories encompassing more than 96% of the male trajectories. The findings indicate that chronic low back pain generally occurs earlier than other conditions, while fibromyalgia tends to follow other COPCs. Endometriosis seems to be associated with an increased prevalence of COPCs in women. In addition, longer trajectories are associated with a greater risk of developing additional COPC or mental condition. The results offer new insights into the progression of COPCs and associated mental conditions, which may inform healthcare providers and patients in managing and preventing exacerbation of these conditions.more » « lessFree, publicly-accessible full text available May 23, 2026
- 
            Abstract Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using ‘off-the-shelf’ products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells intoAlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhancedAlloCAR-NKT cells with high yield and purity. We generatedAlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties ofAlloCAR-NKT cells support their potential for clinical translation.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            BackgroundHeart failure (HF) is a serious condition with increasing prevalence, high morbidity, and increased mortality. Obesity is an established risk factor for HF. Fluctuation in body mass index (BMI) has shown a higher risk of cardiovascular outcomes. We investigated the association between BMI variability and incident HF. Methods and ResultsIn the UK Biobank, we established a prospective cohort after excluding participants with prevalent HF or cancer at enrollment. A total of 99 368 White participants with ≥3 BMI measures during >2 years preceding enrollment were included, with a median follow‐up of 12.5 years. The within‐participant variability of BMI was evaluated using standardized SD and coefficient of variation. The association of BMI variability with incident HF was assessed using Fine and Gray's competing risk model, adjusting for confounding factors and participant‐specific rate of BMI change. Higher BMI variability measured in both SD and coefficient of variation was significantly associated with higher risk in HF incidence (SD: hazard ratio [HR], 1.05 [95% CI, 1.03–1.08],P<0.0001; coefficient of variation: HR, 1.07 [95% CI, 1.04–1.10],P<0.0001). ConclusionsLongitudinal health records capture BMI fluctuation, which independently predicts HF incidence.more » « less
- 
            ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability.more » « less
- 
            OBJECTIVETo characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODSCharacteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011–2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTST1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥ 90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and they resembled T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONSCharacteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.more » « less
- 
            Abstract Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation.more » « lessFree, publicly-accessible full text available May 29, 2026
- 
            ObjectiveTo assess the uptake of second line antihyperglycaemic drugs among patients with type 2 diabetes mellitus who are receiving metformin. DesignFederated pharmacoepidemiological evaluation in LEGEND-T2DM. Setting10 US and seven non-US electronic health record and administrative claims databases in the Observational Health Data Sciences and Informatics network in eight countries from 2011 to the end of 2021. Participants4.8 million patients (=18 years) across US and non-US based databases with type 2 diabetes mellitus who had received metformin monotherapy and had initiated second line treatments. ExposureThe exposure used to evaluate each database was calendar year trends, with the years in the study that were specific to each cohort. Main outcomes measuresThe outcome was the incidence of second line antihyperglycaemic drug use (ie, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, dipeptidyl peptidase-4 inhibitors, and sulfonylureas) among individuals who were already receiving treatment with metformin. The relative drug class level uptake across cardiovascular risk groups was also evaluated. Results4.6 million patients were identified in US databases, 61 382 from Spain, 32 442 from Germany, 25 173 from the UK, 13 270 from France, 5580 from Scotland, 4614 from Hong Kong, and 2322 from Australia. During 2011-21, the combined proportional initiation of the cardioprotective antihyperglycaemic drugs (glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors) increased across all data sources, with the combined initiation of these drugs as second line drugs in 2021 ranging from 35.2% to 68.2% in the US databases, 15.4% in France, 34.7% in Spain, 50.1% in Germany, and 54.8% in Scotland. From 2016 to 2021, in some US and non-US databases, uptake of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors increased more significantly among populations with no cardiovascular disease compared with patients with established cardiovascular disease. No data source provided evidence of a greater increase in the uptake of these two drug classes in populations with cardiovascular disease compared with no cardiovascular disease. ConclusionsDespite the increase in overall uptake of cardioprotective antihyperglycaemic drugs as second line treatments for type 2 diabetes mellitus, their uptake was lower in patients with cardiovascular disease than in people with no cardiovascular disease over the past decade. A strategy is needed to ensure that medication use is concordant with guideline recommendations to improve outcomes of patients with type 2 diabetes mellitus.more » « less
- 
            Marschall, Tobias (Ed.)Abstract MotivationIn a genome-wide association study, analyzing multiple correlated traits simultaneously is potentially superior to analyzing the traits one by one. Standard methods for multivariate genome-wide association study operate marker-by-marker and are computationally intensive. ResultsWe present a sparsity constrained regression algorithm for multivariate genome-wide association study based on iterative hard thresholding and implement it in a convenient Julia package MendelIHT.jl. In simulation studies with up to 100 quantitative traits, iterative hard thresholding exhibits similar true positive rates, smaller false positive rates, and faster execution times than GEMMA’s linear mixed models and mv-PLINK’s canonical correlation analysis. On UK Biobank data with 470 228 variants, MendelIHT completed a three-trait joint analysis (n=185 656) in 20 h and an 18-trait joint analysis (n=104 264) in 53 h with an 80 GB memory footprint. In short, MendelIHT enables geneticists to fit a single regression model that simultaneously considers the effect of all SNPs and dozens of traits. Availability and implementationSoftware, documentation, and scripts to reproduce our results are available from https://github.com/OpenMendel/MendelIHT.jl.more » « less
- 
            OBJECTIVETo determine the benefit of starting continuous glucose monitoring (CGM) in adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) with regard to longer-term glucose control and serious clinical events. RESEARCH DESIGN AND METHODSA retrospective observational cohort study within the Veterans Affairs Health Care System was used to compare glucose control and hypoglycemia- or hyperglycemia-related admission to an emergency room or hospital and all-cause hospitalization between propensity score overlap weighted initiators of CGM and nonusers over 12 months. RESULTSCGM users receiving insulin (n = 5,015 with T1D and n = 15,706 with T2D) and similar numbers of nonusers were identified from 1 January 2015 to 31 December 2020. Declines in HbA1c were significantly greater in CGM users with T1D (−0.26%; 95% CI −0.33, −0.19%) and T2D (−0.35%; 95% CI −0.40, −0.31%) than in nonusers at 12 months. Percentages of patients achieving HbA1c <8 and <9% after 12 months were greater in CGM users. In T1D, CGM initiation was associated with significantly reduced risk of hypoglycemia (hazard ratio [HR] 0.69; 95% CI 0.48, 0.98) and all-cause hospitalization (HR 0.75; 95% CI 0.63, 0.90). In patients with T2D, there was a reduction in risk of hyperglycemia in CGM users (HR 0.87; 95% CI 0.77, 0.99) and all-cause hospitalization (HR 0.89; 95% CI 0.83, 0.97). Several subgroups (based on baseline age, HbA1c, hypoglycemic risk, or follow-up CGM use) had even greater responses. CONCLUSIONSIn a large national cohort, initiation of CGM was associated with sustained improvement in HbA1c in patients with later-onset T1D and patients with T2D using insulin. This was accompanied by a clear pattern of reduced risk of admission to an emergency room or hospital for hypoglycemia or hyperglycemia and of all-cause hospitalization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
