In oil, gas, transportation, and construction industries non-metallic pipes are rapidly replacing metallic pipes. Thus, it is crucial to have a reliable and robust nondestructive testing (NDT) technique to monitor the variation in the thickness profile of such pipes. Here, we propose a technique based on the near-field microwave holography and standardized minimum norm (SMN) to reconstruct the thickness profile of these pipes. We will also identify the fluid carried within the pipe which improves the thickness profile estimation process. The proposed methods are validated via simulation and experimental results.
more »
« less
Quantitative Defect Size Evaluation in Fluid-Carrying Nonmetallic Pipes
There is a rapid trend in various industries to replace the metallic pipes by nonmetallic ones. This is due to the certain properties, such as high strength, lightweight, resilience to corrosion, and low cost of maintenance for nonmetallic pipes. Despite the abovementioned advantages, nonmetallic pipes are still affected by issues, such as erosion, defects, damages, cracks, holes, delamination, and changes in the thickness. These issues are typically caused due to the manufacturing process, type of carried fluid composition, and flow rate. If not examined well, these issues could lead to disastrous failures caused by leakages and bursting of the pipes. To prevent such major failures, it is extremely important to test the pipes periodically for an accurate estimation of their thickness profile. In this article, we propose a nondestructive testing (NDT) technique, based on near-field microwave holography, for identifying the fluid carried by a nonmetallic pipe and estimating the pipe's thickness profile. Identifying the carried fluid helps improve the thickness profile estimation. The performance of the proposed techniques will be demonstrated via simulations and experiments.
more »
« less
- Award ID(s):
- 1920098
- PAR ID:
- 10340300
- Date Published:
- Journal Name:
- IEEE Transactions on Microwave Theory and Techniques
- ISSN:
- 0018-9480
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The use of non-metallic composites that are durable, low cost, and lightweight is growing fast in various industries. A commonly used form of these materials is in the shape of pipes that can be used, for instance, in oil and gas industry. Such pipes can be damaged due to material loss (defects and holes), erosions, and more which may cause major production failures or environmental mishaps. To prevent these issues, non-destructive testing (NDT) methods need to be employed for regular inspections of such components. Since traditional NDT methods are mainly used for metallic pipes, recently microwave imaging has been proposed as a promising approach for examination of non-metallic pipes. While microwave imaging can be employed for inspection of multiple layers of pipes, the effect of undesired eccentricity of the pipes can impose additional imaging errors. In this paper, for the first time, we study the effect of eccentricity of the pipes on the images reconstructed using near-field holographic microwave imaging when imaging double pipes.more » « less
-
Recently, non-metallic materials which are resilient to corrosion, low cost, and light weight, have been exploited in many industrial sectors such as oil and gas field. A common application of them is in the form of pipes. Despite the advantages, these pipes can be damaged by delamination, defects, holes, and erosion, which may lead to major production failures or even environmental catastrophes. To prevent these issues, non-destructive testing (NDT) of these pipes is required to replace these components in a timely manner. Due to the fact that the traditional NDT methods are mostly effective for metallic pipes, microwave holographic imaging is proposed for inspection of multiple concentric non-metallic pipes. Besides, standardized minimum norm (SMN) is employed to mitigate the depth biasing problem in the proposed imaging technique. In order to reduce the complexity of the imaging system, we aim at using the narrowest possible frequency band by using an array of receiver antennas. The performance of the proposed NDT method is validated through simulation and experimental data in two scenarios including the antennas placed outside the pipes and inside the pipes.more » « less
-
null (Ed.)Recently, non-metallic materials which are resilient- to-corrosion, low cost, and light weight have been exploited in many industrial sectors. A common application of them is in the form of pipes. Due to the fact that the traditional NDT methods are mostly effective for metallic pipes, here, a microwave holographic imaging combined with standardized minimum norm (SMN) is proposed for inspection of multiple concentric nonmetallic pipes. To reduce the complexity of the system, we aim at using the narrowest possible frequency band by using an array of receiver antennas. The validity of the proposed imaging method is demonstrated via simulation and experimental results.more » « less
-
Marangoni flow is the motion induced by a surface tension gradient along a fluid–fluid interface. In this study, we report a Marangoni flow generated when a bath of surfactant contacts a pre-wetted film of deionized water on a vertical substrate. The thickness profile of the pre-wetted film is set by gravitational drainage and so varies with the drainage time. The surface tension is lower in the bath due to the surfactant, and thus a liquid film climbs upwards along the vertical substrate due to the surface tension difference. Particle tracking velocimetry is performed to measure the dynamics in the film, where the mean fluid velocity reverses direction as the draining film encounters the front of the climbing film. The effect of the surfactant concentration and the pre-wetted film thickness on the film climbing is then studied. High-speed interferometry is used to measure the front position of the climbing film and the film thickness profile. As a result, higher surfactant concentration induces a faster and thicker climbing film. Also, for high surfactant concentrations, where Marangoni driving dominates, increasing the film thickness increases the rise speed of the climbing front, since viscous resistance is less important. In contrast, for low surfactant concentrations, where Marangoni driving balances gravitational drainage, increasing the film thickness decreases the rise speed of the climbing front while enhancing gravitational drainage. We rationalize these observations by utilizing a dimensionless parameter that compares the magnitudes of the Marangoni stress and gravitational drainage. A model is established to analyse the climbing front, either in the Marangoni-driving-dominated region or in the Marangoni-balanced drainage region. Our work highlights the effects of the gravitational drainage on the Marangoni flow, both by setting the thickness of a pre-wetted film and by resisting the film climbing.more » « less
An official website of the United States government

