skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Detecting Temporal Dependencies in Data
Organizations collect data from various sources, and these datasets may have characteristics that are unknown. Selecting the appropriate statistical and machine learning algorithm for data analytical purposes benefits from understanding these characteristics, such as if it contains temporal attributes or not. This paper presents a theoretical basis for automatically determining the presence of temporal data in a dataset given no prior knowledge about its attributes. We use a method to classify an attribute as temporal, non-temporal, or hidden temporal. A hidden (grouping) temporal attribute can only be treated as temporal if its values are categorized in groups. Our method uses a Ljung-Box test for autocorrelation as well as a set of metrics we proposed based on the classification statistics. Our approach detects all temporal and hidden temporal attributes in 15 datasets from various domains.  more » « less
Award ID(s):
2027750 1822118
NSF-PAR ID:
10340373
Author(s) / Creator(s):
; ; ;
Editor(s):
Pirk, Holger; Heinis, Thomas
Date Published:
Journal Name:
Proceedings of the British International Conference on Databases
Page Range / eLocation ID:
29-39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pirk, Holger ; Heinis, Thomas (Ed.)
    Organizations collect data from various sources, and these datasets may have characteristics that are unknown. Selecting the appropriate statistical and machine learning algorithm for data analytical purposes benefits from understanding these characteristics, such as if it contains temporal attributes or not. This paper presents a theoretical basis for automatically determining the presence of temporal data in a dataset given no prior knowledge about its attributes. We use a method to classify an attribute as temporal, non-temporal, or hidden temporal. A hidden (grouping) temporal attribute can only be treated as temporal if its values are categorized in groups. Our method uses a Ljung-Box test for autocorrelation as well as a set of metrics we proposed based on the classification statistics. Our approach detects all temporal and hidden temporal attributes in 15 datasets from various domains. 
    more » « less
  2. Subspace clustering algorithms are used for understanding the cluster structure that explains the patterns prevalent in the dataset well. These methods are extensively used for data-exploration tasks in various areas of Natural Sciences. However, most of these methods fail to handle confounding attributes in the dataset. For datasets where a data sample represent multiple attributes, naively applying any clustering approach can result in undesired output. To this end, we propose a novel framework for jointly removing confounding attributes while learning to cluster data points in individual subspaces. Assuming we have label information about these confounding attributes, we regularize the clustering method by adversarially learning to minimize the mutual information between the data representation and the confounding attribute labels. Our experimental result on synthetic and real-world datasets demonstrate the effectiveness of our approach. 
    more » « less
  3. The operationalization of algorithmic fairness comes with several practical challenges, not the least of which is the availability or reliability of protected attributes in datasets. In real-world contexts, practical and legal impediments may prevent the collection and use of demographic data, making it difficult to ensure algorithmic fairness. While initial fairness algorithms did not consider these limitations, recent proposals aim to achieve algorithmic fairness in classification by incorporating noisiness in protected attributes or not using protected attributes at all. To the best of our knowledge, this is the first head-to-head study of fair classification algorithms to compare attribute-reliant, noise-tolerant and attribute-unaware algorithms along the dual axes of predictivity and fairness. We evaluated these algorithms via case studies on four real-world datasets and synthetic perturbations. Our study reveals that attribute-unaware and noise-tolerant fair classifiers can potentially achieve similar level of performance as attribute-reliant algorithms, even when protected attributes are noisy. However, implementing them in practice requires careful nuance. Our study provides insights into the practical implications of using fair classification algorithms in scenarios where protected attributes are noisy or partially available. 
    more » « less
  4. Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a Bayesian formulation for attribute hierarchy within CDM framework and developed an efficient Metropolis within Gibbs algorithm to estimate the underlying hierarchy along with the specified CDM parameters. Our proposed estimation method is flexible and can be adapted to a general class of CDMs. We demonstrated our proposed method via a simulation study, and the results from which show that the proposed method can fully recover or estimate at least a subgraph of the underlying structure across various conditions under a specified CDM model. The real data application indicates the potential of learning attribute structure from data using our algorithm and validating the existing attribute hierarchy specified by content experts.

     
    more » « less
  5. Federated learning (FL) has been widely studied recently due to its property to collaboratively train data from different devices without sharing the raw data. Nevertheless, recent studies show that an adversary can still be possible to infer private information about devices' data, e.g., sensitive attributes such as income, race, and sexual orientation. To mitigate the attribute inference attacks, various existing privacy-preserving FL methods can be adopted/adapted. However, all these existing methods have key limitations: they need to know the FL task in advance, or have intolerable computational overheads or utility losses, or do not have provable privacy guarantees. We address these issues and design a task-agnostic privacy-preserving presentation learning method for FL (TAPPFL) against attribute inference attacks. TAPPFL is formulated via information theory. Specifically, TAPPFL has two mutual information goals, where one goal learns task-agnostic data representations that contain the least information about the private attribute in each device's data, and the other goal ensures the learnt data representations include as much information as possible about the device data to maintain FL utility. We also derive privacy guarantees of TAPPFL against worst-case attribute inference attacks, as well as the inherent tradeoff between utility preservation and privacy protection. Extensive results on multiple datasets and applications validate the effectiveness of TAPPFL to protect data privacy, maintain the FL utility, and be efficient as well. Experimental results also show that TAPPFL outperforms the existing defenses.

     
    more » « less