skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning against Attribute Inference Attacks
Federated learning (FL) has been widely studied recently due to its property to collaboratively train data from different devices without sharing the raw data. Nevertheless, recent studies show that an adversary can still be possible to infer private information about devices' data, e.g., sensitive attributes such as income, race, and sexual orientation. To mitigate the attribute inference attacks, various existing privacy-preserving FL methods can be adopted/adapted. However, all these existing methods have key limitations: they need to know the FL task in advance, or have intolerable computational overheads or utility losses, or do not have provable privacy guarantees. We address these issues and design a task-agnostic privacy-preserving presentation learning method for FL (TAPPFL) against attribute inference attacks. TAPPFL is formulated via information theory. Specifically, TAPPFL has two mutual information goals, where one goal learns task-agnostic data representations that contain the least information about the private attribute in each device's data, and the other goal ensures the learnt data representations include as much information as possible about the device data to maintain FL utility. We also derive privacy guarantees of TAPPFL against worst-case attribute inference attacks, as well as the inherent tradeoff between utility preservation and privacy protection. Extensive results on multiple datasets and applications validate the effectiveness of TAPPFL to protect data privacy, maintain the FL utility, and be efficient as well. Experimental results also show that TAPPFL outperforms the existing defenses.  more » « less
Award ID(s):
2302689 2308730 2339686
PAR ID:
10501297
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
10
ISSN:
2159-5399
Page Range / eLocation ID:
10909 to 10917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning models are vulnerable to both security attacks (e.g., adversarial examples) and privacy attacks (e.g., private attribute inference). We take the first step to mitigate both the security and privacy attacks, and maintain task utility as well. Particularly, we propose an information-theoretic framework to achieve the goals through the lens of representation learning, i.e., learning representations that are robust to both adversarial examples and attribute inference adversaries. We also derive novel theoretical results under our framework, e.g., the inherent trade-off between adversarial robustness/utility and attribute privacy, and guaranteed attribute privacy leakage against attribute inference adversaries. 
    more » « less
  2. Deep learning has shown incredible potential across a wide array of tasks, and accompanied by this growth has been an insatiable appetite for data. However, a large amount of data needed for enabling deep learning is stored on personal devices, and recent concerns on privacy have further highlighted challenges for accessing such data. As a result, federated learning (FL) has emerged as an important privacy-preserving technology that enables collaborative training of machine learning models without the need to send the raw, potentially sensitive, data to a central server. However, the fundamental premise that sending model updates to a server is privacy-preserving only holds if the updates cannot be “reverse engineered” to infer information about the private training data. It has been shown under a wide variety of settings that this privacy premise doesnothold. In this article we provide a comprehensive literature review of the different privacy attacks and defense methods in FL. We identify the current limitations of these attacks and highlight the settings in which the privacy of an FL client can be broken. We further dissect some of the successful industry applications of FL and draw lessons for future successful adoption. We survey the emerging landscape of privacy regulation for FL and conclude with future directions for taking FL toward the cherished goal of generating accurate models while preserving the privacy of the data from its participants. 
    more » « less
  3. Federated learning (FL) enables multiple participants to train a global machine learning model without sharing their private training data. Peer-to-peer (P2P) FL advances existing centralized FL paradigms by eliminating the server that aggregates local models from participants and then updates the global model. However, P2P FL is vulnerable to (i) honest-but-curious participants whose objective is to infer private training data of other participants, and (ii) Byzantine participants who can transmit arbitrarily manipulated local models to corrupt the learning process. P2P FL schemes that simultaneously guarantee Byzantine resilience and preserve privacy have been less studied. In this paper, we develop Brave, a protocol that ensures Byzantine Resilience And priVacy-prEserving property for P2P FL in the presence of both types of adversaries. We show that Brave preserves privacy by establishing that any honest-but-curious adversary cannot infer other participants’ private data by observing their models. We further prove that Brave is Byzantine-resilient, which guarantees that all benign participants converge to an identical model that deviates from a global model trained without Byzantine adversaries by a bounded distance. We evaluate Brave against three state-of-the-art adversaries on a P2P FL for image classification tasks on benchmark datasets CIFAR10 and MNIST. Our results show that global models learned with Brave in the presence of adversaries achieve comparable classification accuracy to global models trained in the absence of any adversary. 
    more » « less
  4. While machine learning (ML) models are becoming mainstream, including in critical application domains, concerns have been raised about the increasing risk of sensitive data leakage. Various privacy attacks, such as membership inference attacks (MIAs), have been developed to extract data from trained ML models, posing significant risks to data confidentiality. While the predominant work in the ML community considers traditional Artificial Neural Networks (ANNs) as the default neural model, neuromorphic architectures, such as Spiking Neural Networks (SNNs), have recently emerged as an attractive alternative mainly due to their significantly low power consumption. These architectures process information through discrete events, i.e., spikes, to mimic the functioning of biological neurons in the brain. While the privacy issues have been extensively investigated in the context of traditional ANNs, they remain largely unexplored in neuromorphic architectures, and little work has been dedicated to investigating their privacy-preserving properties. In this paper, we investigate the question of whether SNNs have inherent privacy-preserving advantages. Specifically, we investigate SNNs’ privacy properties through the lens of MIAs across diverse datasets, in comparison with ANNs. We explore the impact of different learning algorithms (surrogate gradient and evolutionary learning), programming frameworks (snnTorch, TENNLab, and LAVA), and various parameters on the resilience of SNNs against MIA. Our experiments reveal that SNNs demonstrate consistently superior privacy preservation compared to ANNs, with evolutionary algorithms further enhancing their resilience. For example, on the CIFAR-10 dataset, SNNs achieve an AUC as low as 0.59 compared to 0.82 for ANNs, and on CIFAR-100, SNNs maintain a low AUC of 0.58, whereas ANNs reach 0.88. Furthermore, we investigate the privacy-utility trade-off through Differentially Private Stochastic Gradient Descent (DPSGD), observing that SNNs incur a notably lower accuracy drop than ANNs under equivalent privacy constraints. 
    more » « less
  5. Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, ϵ, about how much information is leaked by a mechanism. When used in privacy-preserving machine learning, the goal is typically to limit what can be inferred from the model about individual training records. However, the calibration of the privacy budget is not well understood. Implementations of privacy-preserving machine learning often select large values of ϵ in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, relaxed definitions of differential privacy are often used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is no way to obtain privacy for free---relaxed definitions of differential privacy that reduce the amount of noise needed to improve utility also increase the measured privacy leakage. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs for complex learning tasks: settings that provide limited accuracy loss provide little effective privacy, and settings that provide strong privacy result in useless models. 
    more » « less