skip to main content


Title: Enhancing Consistent Ground Maneuverability by Robot Adaptation to Complex Off-Road Terrains
Terrain adaptation is a critical ability for a ground robot to effectively traverse unstructured off-road terrain in real-world field environments such as forests. However, the expected or planned maneuvering behaviors cannot always be accurately executed due to setbacks such as reduced tire pressure. This inconsistency negatively affects the robot’s ground maneuverability, and can cause slower traversal time or errors in localization. To address this shortcoming, we propose a novel method for consistent behavior generation that enables a ground robot’s actual behaviors to more accurately match expected behaviors while adapting to a variety of complex off-road terrains. Our method learns offset behaviors in a self-supervised fashion to compensate for the inconsistency between the actual and expected behaviors without requiring the explicit modeling of various setbacks. To evaluate the method, we perform extensive experiments using a physical ground robot over diverse complex off-road terrain in real-world field environments. Experimental results show that our method enables a robot to improve its ground maneuverability on complex unstructured off-road terrain with more navigational behavior consistency, and outperforms previous and baseline methods, particularly so on challenging terrain such as that which is seen in forests.  more » « less
Award ID(s):
1823245
NSF-PAR ID:
10340542
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Robot Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Terrain adaptation is a critical ability for a ground robot to effectively traverse unstructured off-road terrain in real-world field environments such as forests. However, the expected or planned maneuvering behaviors cannot always be accurately executed due to setbacks such as reduced tire pressure. This inconsistency negatively affects the robot's ground maneuverability and can cause slower traversal time or errors in localization. To address this shortcoming, we propose a novel method for consistent behavior generation that enables a ground robot's actual behaviors to more accurately match expected behaviors while adapting to a variety of complex off-road terrains. Our method learns offset behaviors in a self-supervised fashion to compensate for the inconsistency between the actual and expected behaviors without requiring the explicit modeling of various setbacks. To evaluate the method, we perform extensive experiments using a physical ground robot over diverse complex off-road terrain in real-world field environments. Experimental results show that our method enables a robot to improve its ground maneuverability on complex unstructured off-road terrain with more navigational behavior consistency, and outperforms previous and baseline methods, particularly so on challenging terrain such as that which is seen in forests. 
    more » « less
  2. Ground robots require the crucial capability of traversing unstructured and unprepared terrains and avoiding obstacles to complete tasks in real-world robotics applications such as disaster response. When a robot operates in off-road field environments such as forests, the robot’s actual behaviors often do not match its expected or planned behaviors, due to changes in the characteristics of terrains and the robot itself. Therefore, the capability of robot adaptation for consistent behavior generation is essential for maneuverability on unstructured off-road terrains. In order to address the challenge, we propose a novel method of self-reflective terrain-aware adaptation for ground robots to generate consistent controls to navigate over unstructured off-road terrains, which enables robots to more accurately execute the expected behaviors through robot self-reflection while adapting to varying unstructured terrains. To evaluate our method’s performance, we conduct extensive experiments using real ground robots with various functionality changes over diverse unstructured off-road terrains. The comprehensive experimental results have shown that our self-reflective terrain-aware adaptation method enables ground robots to generate consistent navigational behaviors and outperforms the compared previous and baseline techniques.

     
    more » « less
  3. When robots operate in real-world off-road environments with unstructured terrains, the ability to adapt their navigational policy is critical for effective and safe navigation. However, off-road terrains introduce several challenges to robot navigation, including dynamic obstacles and terrain uncertainty, leading to inefficient traversal or navigation failures. To address these challenges, we introduce a novel approach for adaptation by negotiation that enables a ground robot to adjust its navigational behaviors through a negotiation process. Our approach first learns prediction models for various navigational policies to function as a terrain-aware joint local controller and planner. Then, through a new negotiation process, our approach learns from various policies' interactions with the environment to agree on the optimal combination of policies in an online fashion to adapt robot navigation to unstructured off-road terrains on the fly. Additionally, we implement a new optimization algorithm that offers the optimal solution for robot negotiation in real-time during execution. Experimental results have validated that our method for adaptation by negotiation outperforms previous methods for robot navigation, especially over unseen and uncertain dynamic terrains. 
    more » « less
  4. We propose a diffusion approximation method to the continuous-state Markov decision processes that can be utilized to address autonomous navigation and control in unstructured off-road environments. In contrast to most decision-theoretic planning frameworks that assume fully known state transition models, we design a method that eliminates such a strong assumption that is often extremely difficult to engineer in reality. We first take the second-order Taylor expansion of the value function. The Bellman optimality equation is then approximated by a partial differential equation, which only relies on the first and second moments of the transition model. By combining the kernel representation of the value function, we design an efficient policy iteration algorithm whose policy evaluation step can be represented as a linear system of equations characterized by a finite set of supporting states. We first validate the proposed method through extensive simulations in 2 D obstacle avoidance and 2.5 D terrain navigation problems. The results show that the proposed approach leads to a much superior performance over several baselines. We then develop a system that integrates our decision-making framework with onboard perception and conduct real-world experiments in both cluttered indoor and unstructured outdoor environments. The results from the physical systems further demonstrate the applicability of our method in challenging real-world environments.

     
    more » « less
  5. Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment. 
    more » « less