skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1823245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, researchers have initiated a new wave of convergent research in which Mixed Reality visualizations enable new modalities of human-robot communication, including Mixed Reality Deictic Gestures (MRDGs) – the use of visualizations like virtual arms or arrows to serve the same purpose as traditional physical deictic gestures. But while researchers have demonstrated a variety of benefits to these gestures, it is unclear whether the success of these gestures depends on a user’s level and type of cognitive load. We explore this question through an experiment grounded in rich theories of cognitive resources, attention, and multi-tasking, with significant inspiration drawn from Multiple Resource Theory. Our results suggest that MRDGs provide task-oriented benefits regardless of cognitive load, but only when paired with complex language. These results suggest that designers can pair rich referring expressions with MRDGs without fear of cognitively overloading their users. 
    more » « less
  2. Using robots to collect data is an effective way to obtain information from the environment and communicate it to a static base station. Furthermore, robots have the capability to communicate with one another, potentially decreasing the time for data to reach the base station. We present a Mixed Integer Linear Program that reasons about discrete routing choices, continuous robot paths, and their effect on the latency of the data collection task. We analyze our formulation, discuss optimization challenges inherent to the data collection problem, and propose a factored formulation that finds optimal answers more efficiently. Our work is able to find paths that reduce latency by up to 101% compared to treating all robots independently in our tested scenarios. 
    more » « less
  3. We investigate the effectiveness of robot-generated mixed reality gestures. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time, and that robots can pair long referring expressions with mixed reality gestures without cognitively overloading users. 
    more » « less
  4. Terrain adaptation is a critical ability for a ground robot to effectively traverse unstructured off-road terrain in real-world field environments such as forests. However, the expected or planned maneuvering behaviors cannot always be accurately executed due to setbacks such as reduced tire pressure. This inconsistency negatively affects the robot's ground maneuverability and can cause slower traversal time or errors in localization. To address this shortcoming, we propose a novel method for consistent behavior generation that enables a ground robot's actual behaviors to more accurately match expected behaviors while adapting to a variety of complex off-road terrains. Our method learns offset behaviors in a self-supervised fashion to compensate for the inconsistency between the actual and expected behaviors without requiring the explicit modeling of various setbacks. To evaluate the method, we perform extensive experiments using a physical ground robot over diverse complex off-road terrain in real-world field environments. Experimental results show that our method enables a robot to improve its ground maneuverability on complex unstructured off-road terrain with more navigational behavior consistency, and outperforms previous and baseline methods, particularly so on challenging terrain such as that which is seen in forests. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    In many exploration scenarios, it is important for robots to efficiently explore new areas and constantly communicate results. Mobile robots inherently couple motion and network topology due to the effects of position on wireless propagation, e.g., distance or obstacles between network nodes. Information gain is a useful measure of exploration. However, finding paths that maximize information gain while preserving communication is challenging due to the non-Markovian nature of information gain, discontinuities in network topology, and zero-reward local optima. We address these challenges through an optimization and sampling-based algorithm. Our algorithm scales to 50% more robots and obtains 2-5 times more information relative to path cost compared to baseline planning approaches. 
    more » « less
  7. null (Ed.)
    We present the first experiment analyzing the effectiveness of robot-generated mixed reality gestures using real robotic and mixed reality hardware. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time during visual search tasks, and show that robots can safely pair longer, more natural referring expressions with mixed reality gestures without worrying about cognitively overloading their interlocutors. 
    more » « less
  8. null (Ed.)
    Mixed Reality visualizations provide a powerful new approach for enabling gestural capabilities on non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arm positioned over the gesturing robot (an ego-sensitive allocentric gesture). Specifically, we present the results of a within-subjects Mixed Reality HRI experiment (N=23) exploring the trade-offs between these two types of gestures with respect to both objective performance and subjective social perceptions. Our results show a clear trade-off between performance and social perception, with non-ego-sensitive allocentric gestures enabling faster reaction time and higher accuracy, but ego-sensitive gestures enabling higher perceived social presence, anthropomorphism, and likability. 
    more » « less
  9. Terrain adaptation is a critical ability for a ground robot to effectively traverse unstructured off-road terrain in real-world field environments such as forests. However, the expected or planned maneuvering behaviors cannot always be accurately executed due to setbacks such as reduced tire pressure. This inconsistency negatively affects the robot’s ground maneuverability, and can cause slower traversal time or errors in localization. To address this shortcoming, we propose a novel method for consistent behavior generation that enables a ground robot’s actual behaviors to more accurately match expected behaviors while adapting to a variety of complex off-road terrains. Our method learns offset behaviors in a self-supervised fashion to compensate for the inconsistency between the actual and expected behaviors without requiring the explicit modeling of various setbacks. To evaluate the method, we perform extensive experiments using a physical ground robot over diverse complex off-road terrain in real-world field environments. Experimental results show that our method enables a robot to improve its ground maneuverability on complex unstructured off-road terrain with more navigational behavior consistency, and outperforms previous and baseline methods, particularly so on challenging terrain such as that which is seen in forests. 
    more » « less