skip to main content


Title: Blue crab Callinectes sapidus dietary habits and predation on juvenile winter flounder Pseudopleuronectes americanus in southern New England tidal rivers
Blue crabs Callinectes sapidus have expanded their geographic range northward in the NW Atlantic with possible trophodynamic effects on benthic communities. In this study, we examined the blue crab’s diet in 2 southern New England tidal rivers (USA) and expounded on their predator-prey interaction with juvenile winter flounder Pseudopleuronectes americanus . Blue crabs (8-185 mm carapace width [CW]; n = 1835) were collected from the Seekonk River, Rhode Island, and Taunton River, Massachusetts, between May and August 2012 to 2016, and their feeding habits were assessed via stomach content, stable isotope, and molecular genetic analyses. Blue crabs were found to be generalist carnivores-omnivores with diets varying throughout ontogeny, yet shifts in prey composition had no effect on size-based nitrogen isotope signatures and trophic position (3.50 ± 0.35, mean ± SD). Carbon isotope values indicated that detritus-macroalgae were the dominant carbon source to the food web, with additional contributions from terrestrially derived organic matter and phytoplankton in oligohaline and polyhaline waters, respectively. The main prey of blue crabs ≤49 mm CW were amphipods, shrimp, and unidentified crustaceans, and larger conspecifics fed on bivalves, crabs, and fish. Winter flounder remains, e.g. sagittal otoliths, were identified in the diet of 2.5% of field-collected blue crabs, whereas PCR-based assays detected winter flounder DNA in 17.7% of crab stomachs. Blue crabs 23 to 160 mm CW preyed on winter flounder ranging from 26 to 66 mm total length, with occurrences of predation most closely associated with increases in crab size. Blue crab predation on winter flounder also varied spatially in the rivers, reflecting site-specific differences in flounder densities, abundances of other preferred prey, and dissolved oxygen concentrations that altered predator-prey dynamics. Lastly, the current predatory impact of blue crabs on juvenile winter flounder is nearly equivalent to other portunid crab species. Anticipated temperature-mediated increases in blue crab densities at northern latitudes, however, will intensify the predator-induced mortality of winter flounder and likely hinder their recovery in southern New England.  more » « less
Award ID(s):
1655221
NSF-PAR ID:
10340599
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
681
ISSN:
0171-8630
Page Range / eLocation ID:
145 to 167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions.

     
    more » « less
  2. How ocean acidification (OA) interacts with other stressors is understudied, particularly for predators and prey. We assessed long-term exposure to decreased pH and low salinity on (1) juvenile blue crab Callinectes sapidus claw pinch force, (2) juvenile hard clam Mercenaria mercenaria survival, growth, and shell structure, and (3) blue crab and hard clam interactions in filmed mesocosm trials. In 2018 and 2019, we held crabs and clams from the Chesapeake Bay, USA, in crossed pH (low: 7.0, high: 8.0) and salinity (low: 15, high: 30) treatments for 11 and 10 wk, respectively. Afterwards, we assessed crab claw pinch force and clam survival, growth, shell structure, and ridge rugosity. Claw pinch force increased with size in both years but weakened in low pH. Clam growth was negative, indicative of shell dissolution, in low pH in both years compared to the control. Growth was also negative in the 2019 high-pH/low-salinity treatment. Clam survival in both years was lowest in the low-pH/low-salinity treatment and highest in the high-pH/high-salinity treatment. Shell damage and ridge rugosity (indicative of deterioration) were intensified under low pH and negatively correlated with clam survival. Overall, clams were more severely affected by both stressors than crabs. In the filmed predator-prey interactions, pH did not substantially alter crab behavior, but crabs spent more time eating and burying in high-salinity treatments and more time moving in low-salinity treatments. Given the complex effects of pH and salinity on blue crabs and hard clams, projections about climate change on predator-prey interactions will be difficult and must consider multiple stressors. 
    more » « less
  3. Predator–prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system. In the current study, homarine, trigonelline, and blue crab urine were tested on juvenile oysters (Crassostrea virginica) to ascertain if the same molecules known to alter mud crab behavior also affect juvenile oyster morphology, thus mediating interactions between a generalist predator, a mesopredator, and a basal prey species. Oyster juveniles strengthened their shells in response to blue crab urine and when exposed to homarine and trigonelline in combination, especially at higher concentrations. This study builds upon previous work to pinpoint specific molecules from a generalist predator’s urine that induce defensive responses in two marine prey from different taxa and trophic levels, supporting the hypothesis that common fear molecules exist in ecological systems. 
    more » « less
  4. Abstract

    The capacity of an apex predator to produce nonconsumptive effects (NCEs) in multiple prey trophic levels can create considerable complexity in nonconsumptive cascading interactions, but these effects are poorly studied. We examined such effects in a model food web where the apex predator (blue crabs) releases chemical cues in urine that affect both the intermediate consumer (mud crabs seek shelter) and the basal prey (oysters are induced to grow stronger shells). Shelter availability and predator presence were manipulated in a laboratory experiment to identify patterns in species interactions. Then, experimentally induced and uninduced oysters were planted across high‐quality and low‐quality habitats with varying levels of shelter availability and habitat heterogeneity to determine the consistency of these patterns in the field. Oyster shell thickening in response to blue crab chemical cues generally protected oysters from mud crab predation in both the laboratory and in field environments that differed in predation intensity, structural complexity, habitat heterogeneity, and predator composition. However, NCEs on the intermediate predator (greater use of refugia) opposed the NCEs on oyster prey in the interior of oyster reefs while still providing survival advantages to basal prey on reef edges and bare substrates. Thus, the combined effects of changing movement patterns of intermediate predators and morphological defenses of basal prey create complex, but predictable, patterns of NCEs across landscapes and ecotones that vary in structural complexity. Generalist predators that feed on multiple trophic levels are ubiquitous, and their potential effects on NCEs propagating simultaneously to different trophic levels must be quantified to understand the role of NCEs in food webs.

     
    more » « less
  5. Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.

     
    more » « less