Enterprise software updates depend on the interaction between user and developer organizations. This interaction becomes especially complex when a single developer organization writes software that services hundreds of different user organizations. Miscommunication during patching and deployment efforts lead to insecure or malfunctioning software installations. While developers oversee the code, the update process starts and ends outside their control. Since developer test suites may fail to capture buggy behavior finding and fixing these bugs starts with user generated bug reports and 3rd party disclosures. The process ends when the fixed code is deployed in production. Any friction between user, and developer results in a delay patching critical bugs. Two common causes for friction are a failure to replicate user specific circumstances that cause buggy behavior and incompatible software releases that break critical functionality. Existing test generation techniques are insufficient. They fail to test candidate patches for post-deployment bugs and to test whether the new release adversely effects customer workloads. With existing test generation and deployment techniques, users can't choose (nor validate) compatible portions of new versions and retain their previous version's functionality. We present two new technologies to alleviate this friction. First, Test Generation for Ad Hoc Circumstances transforms buggy executionsmore »
Patch Generation with Language Models: Feasibility and Scaling Behavior
Large language models have shown a propensity for generating correct, multi-line programs from natural language prompts. Given past findings highlighting that bugs and patches can be distinguished by predictability according to simple language models, it is natural to ask if modern, large neural options lend themselves especially well to program repair without any calibration. We study this in the context of one-line bugs, providing a series of models of varying scales (from 160M to 12B parameters) with the context preceding a buggy line in 72 Java and Python programs and analyze the rank at which the correct patch (and original buggy line) is generated, if at all. Our results highlight a noticeable correlation of model size with test-passing accuracy and patch ranking quality, as well as several other findings related to the differences between the two languages and the propensity for especially the largest models to generate candidate patches that closely resemble (if not exactly match), the original developer patch.
- Award ID(s):
- 1762363
- Publication Date:
- NSF-PAR ID:
- 10340618
- Journal Name:
- Deep Learning for Code Workshop
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that can be automatically fixed). However, ProFL only considers one APR system (i.e., PraPR), and it is not clear how other existing APR systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified-debugging approach on 16 state-of-the-art program repair systems for the first time. Our experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all themore »
-
Deep Neural Networks (DNNs) are becoming an integral part of most software systems. Previous work has shown that DNNs have bugs. Unfortunately, existing debugging techniques don't support localizing DNN bugs because of the lack of understanding of model behaviors. The entire DNN model appears as a black box. To address these problems, we propose an approach and a tool that automatically determines whether the model is buggy or not, and identifies the root causes for DNN errors. Our key insight is that historic trends in values propagated between layers can be analyzed to identify faults, and also localize faults. To that end, we first enable dynamic analysis of deep learning applications: by converting it into an imperative representation and alternatively using a callback mechanism. Both mechanisms allows us to insert probes that enable dynamic analysis over the traces produced by the DNN while it is being trained on the training data. We then conduct dynamic analysis over the traces to identify the faulty layer or hyperparameter that causes the error. We propose an algorithm for identifying root causes by capturing any numerical error and monitoring the model during training and finding the relevance of every layer/parameter on the DNN outcome.more »
-
Automated Program Repair (APR) is one of the most recent advances in automated debugging, and can directly fix buggy programs with minimal human intervention. Although various advanced APR techniques (including search-based or semantic-based ones) have been proposed, they mainly work at the source-code level and it is not clear how bytecode-level APR performs in practice. Also, empirical studies of the existing techniques on bugs beyond what has been reported in the original papers are rather limited. In this paper, we implement the first practical bytecode-level APR technique, PraPR, and present the first extensive study on fixing real-world bugs (e.g., Defects4J bugs) using JVM bytecode mutation. The experimental results show that surprisingly even PraPR with only the basic traditional mutators can produce genuine fixes for 17 bugs; with simple additional commonly used APR mutators, PraPR is able to produce genuine fixes for 43 bugs, significantly outperforming state-of-the-art APR, while being over 10X faster. Furthermore, we performed an extensive study of PraPR and other recent APR tools on a large number of additional real-world bugs, and demonstrated the overfitting problem of recent advanced APR tools for the first time. Lastly, PraPR has also successfully fixed bugs for other JVM languages (e.g., formore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »