skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: “Do I need to know what I am doing if I am the teacher?” Developing teachers’ debugging pedagogies with physical computing.
This paper presents findings from a study of middle school science teachers’ professional learning activities designed to support the development of their debugging pedagogies. In two iterations of a professional learning activity, teachers worked to find bugs planted by facilitators in physical computing systems they were learning to integrate into their middle school science classrooms. We examine how teachers navigated the tension between developing their own troubleshooting skills versus supporting students’ skills in resolving inconsistencies between what they expect of the DaSH and what it actually does. We conclude with implications for the design of PL activities for supporting teachers’ debugging pedagogies.  more » « less
Award ID(s):
1742053
NSF-PAR ID:
10340643
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference of the Learning Sciences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  3. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  4. In this paper we present an evaluation and lessons learned from a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought eleven undergraduate science and engineering students with diverse educational and institutional backgrounds and four local middle and high school teachers on campus for an 8-week research experience working in established lab groups at the university. Using the Qualtrics online survey software, we conducted pre-experience and post-experience surveys of the participants to assess the effects of participating in this summer research program. At the beginning of the summer, all participants provided their definition of technical research and described what they hoped to get out of their research experience, and the undergraduate students described their future career and educational plans. At the conclusion of the summer, a post-experience survey presented participants’ with their answers from the beginning of the summer and asked them to reflect on how their understanding of research and future plans involving research changed over the course of the summer experience. Many participants evolved a new understanding of research as a result of participating in the summer experience. In particular, they better recognized the collaborative nature of research and the challenges that can arise as part of the process of doing research. Participants acquired both technical and professional skills that they found useful, such as learning new programming languages, becoming proficient at using new pieces of equipment, reviewing technical literature, and improving presentation and communication skills. Undergraduates benefited from developing new relationships with their peers, while the teacher participants benefited from developing relationships with faculty and staff at the university. While most of the participants felt that they were better prepared for future studies or employment, they did not feel like the summer research experience had a significant impact on their future career or degree plans. Finally, while almost all of the participants described their summer research experience as positive, areas for improvement included better planning and access to mentors, as well as more structured activities for the teachers to adapt their research activities for the classroom. 
    more » « less
  5. There is an increasing need for knowledgeable K-12 computer science (CS) teachers. It is necessary to inform teachers how to debug and help their students debug programs. Research has shown that debugging is difficult for novices because the process requires different skills from creating programs and instructing students how to debug can help them acquire these skills. To this end, we developed a CS professional development for middle grade teachers (grades 5th-8th/ages 10-13) that includes lessons on debugging. The teachers completed debugging activities that involved finding bugs in Scratch programs and explaining how they would help their students in debugging. We qualitatively analyzed their responses and found that teachers successfully identified the problem but they struggled to locate it in the code. In considering how they would help students who had such a bug, the teachers often focused on helping the student find a solution for the bug rather than on identifying the problem or its source. Finally, teachers’ ability to identify bugs and the pedagogical strategies to engage students in this process differed based on CS teaching experience and prior CS knowledge. This work contributes to our understanding of teachers’ debugging abilities and advances our knowledge on how to support teachers in teaching their students how to debug their programs. 
    more » « less