skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blockade of endoplasmic reticulum stress‐induced cell death by Ureaplasma parvum vacuolating factor
Previously, we found that Ureaplasma parvum internalised into HeLa cells and cyto- solic accumulation of galectin-3. U. parvum induced the host cellular membrane dam- age and survived there. Here, we conducted vesicular trafficking inhibitory screening in yeast to identify U. parvum vacuolating factor (UpVF). U. parvum triggered endo- plasmic reticulum (ER) stress and upregulated the unfolded protein response-related factors, including BiP, P-eIF2 and IRE1 in the host cells, but it blocked the induction of the downstream apoptotic factors. MicroRNA library screening of U. parvum- infected cells and UpVF-transfected cells identified miR-211 and miR-214 as the negative regulators of the apoptotic cascade under ER stress. Transient expression of UpVF induced HeLa cell death with intracellular vacuolization; however, some stable UpVF transformant survived. U. parvum-infected cervical cell lines showed resistance to actinomycin D, and UpVF stable transformant cell lines exhibited resistance to X- ray irradiation, as well as cisplatin and paclitaxel. UpVF expressing cervical cancer xenografts in nude mice also acquired resistance to cisplatin and paclitaxel. A myco- plasma expression vector based on Mycoplasma mycoides, Syn-MBA (multiple banded antigen)-UpVF, reduced HeLa cell survival compared with that of Syn-MBA after 72 hr of infection. These findings together suggest novel mechanisms for Ureaplasma infection and the possible implications for cervical cancer malignancy.  more » « less
Award ID(s):
1818344 1840320
PAR ID:
10340645
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Cellular Microbiology
Volume:
23
Issue:
12
ISSN:
1462-5814
Subject(s) / Keyword(s):
cervical cancer, ER stress, miRNA, Ureaplasma parvum, vacuolating factor
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three new organotin( iv ) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR ( 1 H, 13 C, 119 Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P 2 1 / c having distorted bipyramidal geometry defined by C 3 SnO 2 . The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC 50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells. 
    more » « less
  2. Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers. 
    more » « less
  3. Extracellular vesicles are nanosized vesicles that are under intense investigation for their role in intercellular communication. Extracellular vesicles have begun to be examined for their role in disease protection and their role as disease biomarkers and/or vaccine agents. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of extracellular vesicles derived from the cervical cancer line, HeLa. The HeLa cells were cultured in exosome-free media and were either mock-treated (control) or treated with 50 mM or 100 mM of alcohol for 24 h and 48 h. Our results demonstrated that alcohol significantly impacts HeLa cell viability and exosome biogenesis/composition. Importantly, our studies demonstrate the critical role of alcohol on HeLa cells, as well as HeLa-derived extracellular vesicle biogenesis and composition. Specifically, these results indicate that alcohol alters extracellular vesicles’ packaging of heat shock proteins and apoptotic proteins. Extracellular vesicles serve as communicators for HeLa cells, as well as biomarkers for the initiation and progression of disease. 
    more » « less
  4. Summary IRE1, BI‐1, and bZIP60 monitor compatible plant–potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of threeIRE1isoforms, thebZIP60UandbZIP60S, andBI‐1roles in genetic reprogramming of cells during potexvirus infection.Experiments were performed usingArabidopsis thalianaknockout lines andPlantago asiatica mosaic virusinfectious clone tagged with the green fluorescent protein gene (PlAMV‐GFP).There were more PlAMV‐GFP infection foci inire1a/b,ire1c,bzip60, andbi‐1knockout than wild‐type (WT) plants. Cell‐to‐cell movement and systemic RNA levels were greaterbzip60andbi‐1than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression ofAtIRE1borStbZIP60inire1a/borbzip60mutant background reduced virus infection foci, whileStbZIP60expression influences virus movement. Transgenic overexpression ofStbZIP60also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER.This is the first demonstration of a potatobZIPtranscription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI‐1 contribute separately to virus cell‐to‐cell and systemic movement. 
    more » « less
  5. Abstract Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment. 
    more » « less