skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Enhanced Decoding Algorithm for Coded Compressed Sensing with Applications to Unsourced Random Access
Unsourced random access (URA) has emerged as a pragmatic framework for next-generation distributed sensor networks. Within URA, concatenated coding structures are often employed to ensure that the central base station can accurately recover the set of sent codewords during a given transmission period. Many URA algorithms employ independent inner and outer decoders, which can help reduce computational complexity at the expense of a decay in performance. In this article, an enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement has the potential to simultaneously improve error performance and decrease the computational complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA algorithms, and the performance benefits of the algorithm are characterized. Findings are supported by numerical simulations.  more » « less
Award ID(s):
2131106 1619085
PAR ID:
10340671
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
2
ISSN:
1424-8220
Page Range / eLocation ID:
676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An expurgating linear function (ELF) is an outer code that disallows low-weight codewords of the inner code. ELFs can be designed either to maximize the minimum distance or to minimize the codeword error rate (CER) of the expurgated code. A list-decoding sieve can efficiently identify ELFs that maximize the minimum distance of the expurgated code. For convolutional inner codes, this paper provides analytical distance spectrum union (DSU) bounds on the CER of the concatenated code. For short codeword lengths, ELFs transform a good inner code into a great concatenated code. For a constant message size of K = 64 bits or constant codeword blocklength of N = 152 bits, an ELF can reduce the gap at CER 10−6 between the DSU and the random-coding union (RCU) bounds from over 1 dB for the inner code alone to 0.23 dB for the concatenated code. The DSU bounds can also characterize puncturing that mitigates the rate overhead of the ELF while maintaining the DSU-to-RCU gap. List Viterbi decoding guided by the ELF achieves maximum likelihood (ML) decoding of the concatenated code with a sufficiently large list size. The rate-K/(K+m) ELF outer code reduces rate and list decoding increases decoder complexity. As SNR increases, the average list size converges to 1 and average complexity is similar to Viterbi decoding on the trellis of the inner code. For rare large-magnitude noise events, which occur less often than the FER of the inner code, a deep search in the list finds the ML codeword. 
    more » « less
  2. Iterative decoding of graph-based codes and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes (SR-LDPC codes) and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, low-density parity-check (LDPC) codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs. 
    more » « less
  3. This article introduces a novel concatenated coding scheme called sparse regression LDPC (SR-LDPC) codes. An SR-LDPC code consists of an outer non-binary LDPC code and an inner sparse regression code (SPARC), whose respective field size and section sizes are equal. For such codes, an efficient decoding algorithm is proposed based on approximate message passing (AMP) that dynamically shares soft information between inner and outer decoders. This dynamic exchange of information is facilitated by a denoiser that runs belief propagation (BP) on the factor graph of the outer LDPC code within each AMP iteration. It is shown that this BP denoiser falls within the framework of non-separable denoising functions and subsequently, that state evolution holds for the proposed AMP-BP algorithm. Leveraging the rich structure of SR-LDPC codes, this article proposes an efficient low-dimensional approximate state evolution recursion that can be used for efficient hyperparameter tuning, thus paving the way for future work on optimal code design. Finally, numerical simulations demonstrate that SR-LDPC codes outperform contemporary codes over the AWGN channel for parameters of practical interest. SR-LDPC codes are shown to be viable means for obtaining shaping gains over the AWGN channel. 
    more » « less
  4. In this paper, a method for joint source-channel coding (JSCC) based on concatenated spatially coupled low-density parity-check (SC-LDPC) codes is investigated. A construction consisting of two SC-LDPC codes is proposed: one for source coding and the other for channel coding, with a joint belief propagation-based decoder. Also, a novel windowed decoding (WD) scheme is presented with significantly reduced latency and complexity requirements. The asymptotic behavior for various graph node degrees is analyzed using a protograph-based Extrinsic Information Transfer (EXIT) chart analysis for both LDPC block codes with block decoding and for SC-LDPC codes with the WD scheme, showing robust performance for concatenated SC-LDPC codes. Simulation results show a notable performance improvement compared to existing state-of-the-art JSCC schemes based on LDPC codes with comparable latency and complexity constraints. 
    more » « less
  5. The Consultative Committee for Space Data Systems (CCSDS) standard for high photon efficiency uses a serially-concatenated (SC) code to encode pulse position modulated laser light. A convolutional encoder serves as the outer code and an accumulator serves as the inner code. These two component codes are connected through an interleaver. This coding scheme is called Serially Concatenated convolutionally coded Pulse Position Modulation (SCPPM) and it is used for NASA's Deep Space Optical Communications (DSOC) experiment. For traditional decoding that traverses the trellis forwards and backwards according to the Bahl Cocke Jelinek and Raviv (BCJR) algorithm, the latency is on the order of the length of the trellis, which has 10,080 stages for the rate 2/3 DSOC code. This paper presents a novel alternative approach that simultaneously processes all trellis stages, successively combining pairs of stages into a meta-stage. This approach has latency that is on the order of the log base-2 of the number of stages. The new decoder is implemented using the Compute Unified Device Architecture (CUDA) platform on an Nvidia Graphics Processing Unit (GPU). Compared to Field Programmable Gate Array (FPGA) implementations, the GPU implementation offers easier development, scalability, and portability across GPU models. The GPU implementation provides a dramatic increase in speed that facilitates more thorough simulation as well as enables a shift from FPGA to GPU processors for DSOC ground stations. 
    more » « less