skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Semi-discrete Optimization Through Semi-discrete Optimal Transport: A Framework for Neural Architecture Search
Award ID(s):
2005797
PAR ID:
10340711
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Nonlinear Science
Volume:
32
Issue:
3
ISSN:
0938-8974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Within the context of event modeling and understanding, we propose a new method for neural sequence modeling that takes partially-observed sequences of discrete, external knowledge into account. We construct a sequential neural variational autoencoder, which uses Gumbel-Softmax reparametrization within a carefully defined encoder, to allow for successful backpropagation during training. The core idea is to allow semi-supervised external discrete knowledge to guide, but not restrict, the variational latent parameters during training. Our experiments indicate that our approach not only outperforms multiple baselines and the state-of-the-art in narrative script induction, but also converges more quickly. 
    more » « less
  2. Within the context of event modeling and understanding, we propose a new method for neural sequence modeling that takes partially-observed sequences of discrete, external knowledge into account. We construct a sequential neural variational autoencoder, which uses Gumbel-Softmax reparametrization within a carefully defined encoder, to allow for successful backpropagation during training. The core idea is to allow semi-supervised external discrete knowledge to guide, but not restrict, the variational latent parameters during training. Our experiments indicate that our approach not only outperforms multiple baselines and the state-of-the-art in narrative script induction, but also converges more quickly. 
    more » « less