Objectives. Physical computing systems are increasingly being integrated into secondary school science and STEM instruction, yet little is known about how teachers, especially those with little background and experience in computing, help students during the inevitable debugging moments that arise. In this article, we describe a framework, comprising two dimensions, for characterizing how teachers support students as they debug a physical computing system called the Data Sensor Hub (DASH). The DASH enables students to program sensors to measure, analyze, and visualize data as they engage in science inquiry activities. Participants. Five secondary school teachers implemented an inquiry-oriented instructional unit designed to introduce students to working with the DASH as a tool for scientific inquiry. Study Method. Findings drew on video analysis of the teachers’ classroom implementations of the unit. A review of the data corpus led to the selection of 23 moments where the teachers supported an individual or small groups of students engaged in debugging. These moments were analyzed using a grounded perspective based on Interaction Analysis to characterize the teachers’ varied interactional approaches. Findings. Our analysis revealed how teachers’ moves during debugging moments fell along two dimensions. The first dimension characterizes teachers’ positioning during the debugging interactions, ranging from a positioning for teacher understanding to a positioning for student understanding of the bug. The second dimension characterizes the inquiry orientation of the teachers’ questions and guidance, ranging from focusing on the debugging process to focusing on the product—or fixing the bug. Further, teachers’ moves often fell along different points on these dimensions given nuances in the instructional context. Conclusions. The framework offers a first step toward characterizing teachers’ debugging pedagogy as they support students during debugging moments. It also calls attention to how teachers do not necessarily need to be programming experts to effectively help students learn independent and generalizable debugging strategies. Further, it illustrates the variety of expertise that teachers can bring to debugging moments to support students learning to debug. Finally, the framework provides implications for the design of professional learning and supports for teachers as they increasingly are asked to support students in computing—and debugging—activities across a range of disciplines. 
                        more » 
                        « less   
                    
                            
                            Debugging pedagogies: Helping middle school students learn to get unstuck with physical computing systems.
                        
                    
    
            The paper draws on data collected during an inquiry-oriented instructional approach in which students learn to program a sensor-based physical computing system to collect and display meaningful data from the world around them. As part of one instructional unit (Sensor Immersion Unit) students debug their system when it does not work as they expect it to. We present a case study of how one teacher (Gabrielle) acted as a caring collaborator with students as they addressed hardware and software problems. This included modeling and articulating a regular systematic approach to becoming “unstuck,” which we map in analysis. Gabrielle’s approach to supporting students, or her debugging pedagogy, positions debugging as core computing practice rather than as a means to overcome failure. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1742053
- PAR ID:
- 10340787
- Date Published:
- Journal Name:
- Annual meeting program American Educational Research Association
- ISSN:
- 0163-9676
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This article describes a sensor-based physical computing system, called the Data Sensor Hub (DaSH), which enables students to process, analyze, and display data streams collected using a variety of sensors. The system is built around the portable and affordable BBC micro:bit microcontroller (expanded with the gator:bit), which students program using a visual, cloud-based programming environment intended for novices. Students connect a variety of sensors (measuring temperature, humidity, carbon dioxide, sound, acceleration, magnetism, etc.) and write programs to analyze and visualize the collected sensor data streams. The article also describes two instructional units intended for middle grade science classes that use this sensor-based system. These inquiry-oriented units engage students in designing the system to collect data from the world around them to investigate scientific phenomena of interest. The units are designed to help students develop the ability to meaningfully integrate computing as they engage in place-based learning activities while using tools that more closely approximate the practices of contemporary scientists as well as other STEM workers. Finally, the article articulates how the DaSH and units have elicited different kinds of teacher practices using student drawn modeling activities, facilitating debugging practices, and developing place-based science practices.more » « less
- 
            Popular platforms for teaching physical computing like the LilyPad Arduino and Adafruit Circuit Playground have simplified programming and wiring, enabling students to quickly engineer physical computing projects. But enabling students to rapidly design and build is a double-edged sword: Students can create functioning prototypes without fully understanding the underlying principles. With limited knowledge and experience, students struggle to locate and fix bugs, or errors, in their projects. Absent appropriate debugging tools, students rely on their instructor for locating errors, or worse, turn toward destructive tactics such as tearing apart and rebuilding their project, hoping the bug fixes itself. Students need tools targeted to their ability that scaffold debugging and help them locate bugs in the mixed hardware/software environment of physical computing. I developed Circuit Check to scaffold the debugging process for students. It enables students to observe real-time sensor data and test hardware components through a novel adaptation of the traditional breakpoint for physical computing.more » « less
- 
            This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations.more » « less
- 
            Rajala, a; Cortez, A; Hofmann, A; Jornet, A; Lotz-Sisitka, H; Markauskaite, M (Ed.)Computational modeling of scientific systems is a powerful approach for fostering science and computational thinking (CT) proficiencies. However, the role of programming activities for this synergistic learning remains unclear. This paper examines alternative ways to engage with computational models (CM) beyond programming. Students participated in an integrated Science, Engineering, and Computational Modeling unit through one of three distinct instructional versions: Construct a CM, Interpret-and-Evaluate a CM, and Explore-and-Evaluate a simulation. Analyzing 188 student responses to a science+CT embedded assessment task, we investigate how science proficiency and instructional versions related to pseudocode interpretation and debugging performances. We found that students in the Explore-and-Evaluate a simulation outperformed students in the programming-based versions on the CT assessment items. Additionally, science proficiency strongly predicted students’ CT performance, unlike prior programming experience. These results highlight the promise of diverse approaches for fostering CT practices with implications for STEM+C instruction and assessment design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    