skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: The Data Sensor Hub (DaSH): A Physical Computing System to Support Middle School Inquiry Science Instruction
This article describes a sensor-based physical computing system, called the Data Sensor Hub (DaSH), which enables students to process, analyze, and display data streams collected using a variety of sensors. The system is built around the portable and affordable BBC micro:bit microcontroller (expanded with the gator:bit), which students program using a visual, cloud-based programming environment intended for novices. Students connect a variety of sensors (measuring temperature, humidity, carbon dioxide, sound, acceleration, magnetism, etc.) and write programs to analyze and visualize the collected sensor data streams. The article also describes two instructional units intended for middle grade science classes that use this sensor-based system. These inquiry-oriented units engage students in designing the system to collect data from the world around them to investigate scientific phenomena of interest. The units are designed to help students develop the ability to meaningfully integrate computing as they engage in place-based learning activities while using tools that more closely approximate the practices of contemporary scientists as well as other STEM workers. Finally, the article articulates how the DaSH and units have elicited different kinds of teacher practices using student drawn modeling activities, facilitating debugging practices, and developing place-based science practices.  more » « less
Award ID(s):
1742046 2019805
NSF-PAR ID:
10343522
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
18
ISSN:
1424-8220
Page Range / eLocation ID:
6243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  2. null (Ed.)
    This article describes a professional development (PD) model, the CT- Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT- Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  3. In recent years, Wyoming has developed Computer Science (CS) standards for adoption and use within K-12 classrooms. These standards, adopted in January of 2022, go into effect for the 2022-2023 school year. The University of Wyoming has offered two different computer science week-long professional developments for teachers. Many K-12 teachers do not have a CS background, so developing CS lessons plans can be a challenge in these PDs.This research study is centered around three central questions: 1) To what extent did K-12 teachers integrate computing topics into their PD created lesson plans; 2) How do the teacher perceptions from the two CS PDs compare to each other; and 3) How was the CS PD translated to classroom activity? The first PD opportunity (n=14), was designed to give hands-on learning with CS topics focused on cybersecurity. The second PD opportunity (n=28), focused on integrating CS into existing curricula. At the end of each of these PDs, teacher K-12 teachers incorporated CS topics into their selected existing lesson plan(s). Additionally, a support network was implemented to support excellence in CS education throughout the state. This research study team evaluated the lesson plans developed during each PD event, by using a rubric on each lesson plan. Researchers collected exit surveys from the teachers. Implementation metrics were also gathered, including, how long each lesson lasted, how many students were involved in the implementation, what grades the student belonged to, the basic demographics of the students, the type of course the lesson plan was housed in, if the K-12 teacher reached their intended purpose, what evidence the K-12 teacher had of the success of their lesson plan, data summaries based on supplied evidence, how the K-12 teachers would change the lesson, the challenges and successes they experienced, and samples of student work. Quantitative analysis was basic descriptive statistics. Findings, based on evaluation of 40+ lessons, taught to over 1500 K-12 students, indicate that when assessed on a three point rubric of struggling, emerging, or excellent - certain components (e.g., organization, objectives, integration, activities & assessment, questions, and catch) of K-12 teacher created lessons plans varied drastically. In particular, lesson plan organization, integration, and questions each had a significant number of submissions which were evaluated as "struggling" [45%, 46%, 41%] through interesting integration, objectives, activities & assessment, and catch all saw submissions which were evaluated as "excellent" [43%, 48%, 43%, 48%]. The relationship between existing K-12 policies and expectations surfaces within these results and in combination with other findings leads to implications for the translation of current research practices into pre-collegiate PDs. 
    more » « less
  4. Background/Context: Bi/multilingual students’ STEM learning is better supported when educators leverage their language and cultural practices as resources, but STEM subject divisions have been historically constructed based on oppressive, dominant values and exclude the ways of knowing of nondominant groups. Truly promoting equity requires expanding and transforming STEM disciplines. Purpose/Objective/Research Question/Focus of Study: This article contributes to efforts to illuminate emergent bi/multilingual students’ ways of knowing, languaging, and doing in STEM. We follow the development of syncretic literacies in relation to translanguaging practices, asking, How do knowledges and practices from different communities get combined and reorganized by students and teachers in service of new modeling practices? Setting and Participants: We focus on a seventh-grade science classroom, deliberately designed to support syncretic literacies and translanguaging practices, where computer science concepts were infused into the curriculum through modeling activities. The majority of the students in the bilingual program had arrived in the United States at most three years before enrolling, from the Caribbean and Central and South America. Research Design: We analyze one lesson that was part of a larger research–practice partnership focused on teaching computer science through leveraging translanguaging practices and syncretic literacies. The lesson was a modeling and computing activity codesigned by the teacher and two researchers about post–Hurricane María outmigration from Puerto Rico. Analysis used microethnographic methods to trace how students assembled translanguaging, social, and schooled practices to make sense of and construct models. Findings/Results: Findings show how students assembled representational forms from a variety of practices as part of accomplishing and negotiating both designed and emergent goals. These included sensemaking, constructing, explaining, justifying, and interpreting both the physical and computational models of migration. Conclusions/Recommendations: Implications support the development of theory and pedagogy that intentionally make space for students to engage in meaning-making through translanguaging and syncretic practices in order to provide new possibilities for lifting up STEM learning that may include, but is not constrained by, disciplinary learning. Additional implications for teacher education and student assessment practices call for reconceptualizing schooling beyond day-to-day curriculum as part of making an ontological shift away from prioritizing math, science, and CS disciplinary and language objectives as defined by and for schooling, and toward celebrating, supporting, and centering students’ diverse, syncretic knowledges and knowledge use. 
    more » « less
  5. null (Ed.)
    Engaging in physical computing activities involving both hard- ware and software provides a hands-on introduction to computer science. The move to remote learning for primary and secondary schools during the 2020-2021 school year due to COVID-19 made implementing physical computing activities especially challenging. However, it is important that these activities are not simply eliminated from the curriculum. This paper explores how a unit centered around students investigating how programmable sensors that can support data-driven scientific inquiry was collaboratively adapted for remote instruction. A case study of one teacher’s experience implementing the unit with a group of middle school students (ages 11 to 14) in her STEM elective class examines how her students could still engage in computational thinking practices around data and programming. The discussion includes both the challenges and unexpected affordances of engaging in physical computing activities remotely that emerged from her implementation. 
    more » « less