Learned optimization algorithms are promising approaches to inverse problems by leveraging advanced numerical optimization schemes and deep neural network techniques in machine learning. In this paper, we propose a novel deep neural network architecture imitating an extra proximal gradient algorithm to solve a general class of inverse problems with a focus on applications in image reconstruction. The proposed network features learned regularization that incorporates adaptive sparsification mappings, robust shrinkage selections, and nonlocal operators to improve solution quality. Numerical results demonstrate the improved efficiency and accuracy of the proposed network over several state-of-the-art methods on a variety of test problems.
more »
« less
Stochastic Solutions for Linear Inverse Problems using the Prior Implicit in a Denoiser
Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10340837
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Monte Carlo (MC) methods are widely used in many research areas such as physical simulation, statistical analysis, and machine learning. Application of MC methods requires drawing fast mixing samples from a given probability distribution. Among existing sampling methods, the Hamiltonian Monte Carlo (HMC) utilizes gradient information during Hamiltonian simulation and can produce fast mixing samples at the highest efficiency. However, without carefully chosen simulation parameters for a specific problem, HMC generally suffers from simulation locality and computation waste. As a result, the No-U-Turn Sampler (NUTS) has been proposed to automatically tune these parameters during simulation and is the current state-of-the-art sampling algorithm. However, application of NUTS requires frequent gradient calculation of a given distribution and high-volume vector processing, especially for large-scale problems, leading to drawing an expensively large number of samples and a desire of hardware acceleration. While some hardware acceleration works have been proposed for traditional Markov Chain Monte Carlo (MCMC) and HMC methods, there is no existing work targeting hardware acceleration of the NUTS algorithm. In this paper, we present the first NUTS accelerator on FPGA while addressing the high complexity of this state-of-the-art algorithm. Our hardware and algorithm co-optimizations include an incremental resampling technique which leads to a more memory efficient architecture and pipeline optimization for multi-chain sampling to maximize the throughput. We also explore three levels of parallelism in the NUTS accelerator to further boost performance. Compared with optimized C++ NUTS package: RSTAN, our NUTS accelerator can reach a maximum speedup of 50.6X and an energy improvement of 189.7X.more » « less
-
We propose Intermediate Layer Optimization (ILO), a novel optimization algorithm for solving inverse problems with deep generative models. Instead of optimizing only over the initial latent code, we progressively change the input layer obtaining successively more expressive generators. To explore the higher dimensional spaces, our method searches for latent codes that lie within a small l1 ball around the manifold induced by the previous layer. Our theoretical analysis shows that by keeping the radius of the ball relatively small, we can improve the established error bound for compressed sensing with deep generative models. We empirically show that our approach outperforms state-of-the-art methods introduced in StyleGAN-2 and PULSE for a wide range of inverse problems including inpainting, denoising, super-resolution and compressed sensing.more » « less
-
Regularization by denoising (RED) is a widely-used framework for solving inverse problems by leveraging image de-noisers as image priors. Recent work has reported the state-of-the-art performance of RED in a number of imaging applications using pre-trained deep neural nets as denoisers. Despite the recent progress, the stable convergence of RED algorithms remains an open problem. The existing RED theory only guarantees stability for convex data-fidelity terms and nonexpansive denoisers. This work addresses this issue by developing a new monotone RED (MRED) algorithm, whose convergence does not require nonexpansiveness of the deep denoising prior. Simulations on image deblurring and compressive sensing recovery from random matrices show the stability of MRED even when the traditional RED diverges.more » « less
-
Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditions and show that the exact hypergradient is obtained asymptotically. Our method's simplicity and small space and time complexities enable us to effectively solve large-scale bilevel problems involving deep neural networks. We present results on data denoising, few-shot learning, and training-data poisoning problems in a large-scale setting. Our results show that our approach outperforms or is comparable to previously proposed methods based on automatic differentiation and approximate inversion in terms of accuracy, run-time, and convergence speed.more » « less