skip to main content


Title: Extra Proximal-Gradient Network with Learned Regularization for Image Compressive Sensing Reconstruction
Learned optimization algorithms are promising approaches to inverse problems by leveraging advanced numerical optimization schemes and deep neural network techniques in machine learning. In this paper, we propose a novel deep neural network architecture imitating an extra proximal gradient algorithm to solve a general class of inverse problems with a focus on applications in image reconstruction. The proposed network features learned regularization that incorporates adaptive sparsification mappings, robust shrinkage selections, and nonlocal operators to improve solution quality. Numerical results demonstrate the improved efficiency and accuracy of the proposed network over several state-of-the-art methods on a variety of test problems.  more » « less
Award ID(s):
2152960 1925263 2152961
NSF-PAR ID:
10392664
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Imaging
Volume:
8
Issue:
7
ISSN:
2313-433X
Page Range / eLocation ID:
178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2plume predictions near, and far away, from the monitoring wells.

     
    more » « less
  2. Diffractive achromats (DAs) promise ultra-thin and light-weight form factors for full-color computational imaging systems. However, designing DAs with the optimal optical transfer function (OTF) distribution suitable for image reconstruction algorithms has been a difficult challenge. Emerging end-to-end optimization paradigms of diffractive optics and processing algorithms have achieved impressive results, but these approaches require immense computational resources and solve non-convex inverse problems with millions of parameters. Here, we propose a learned rotational symmetric DA design using a concentric ring decomposition that reduces the computational complexity and memory requirements by one order of magnitude compared with conventional end-to-end optimization procedures, which simplifies the optimization significantly. With this approach, we realize the joint learning of a DA with an aperture size of 8 mm and an image recovery neural network, i.e., Res-Unet, in an end-to-end manner across the full visible spectrum (429–699 nm). The peak signal-to-noise ratio of the recovered images of our learned DA is 1.3 dB higher than that of DAs designed by conventional sequential approaches. This is because the learned DA exhibits higher amplitudes of the OTF at high frequencies over the full spectrum. We fabricate the learned DA using imprinting lithography. Experiments show that it resolves both fine details and color fidelity of diverse real-world scenes under natural illumination. The proposed design paradigm paves the way for incorporating DAs for thinner, lighter, and more compact full-spectrum imaging systems.

     
    more » « less
  3. Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting time-dependent optimal control fields, E ( t ), that enable desired electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency domain ( i.e. , the Fourier transform of E ( t )), and (2) a cross-correlation neural network approach for directly predicting E ( t ) in the time domain. Both of these machine learning methods give complementary approaches for probing the underlying quantum dynamics and also exhibit impressive performance in accurately predicting both the frequency and strength of the optimal control field. We provide detailed architectures and hyperparameters for these deep neural networks as well as performance metrics for each of our machine-learned models. From these results, we show that machine learning, particularly deep neural networks, can be employed as cost-effective statistical approaches for designing electromagnetic fields to enable desired transitions in these quantum dynamical systems. 
    more » « less
  4. A Transformer-based deep direct sampling method is proposed for electrical impedance tomography, a well-known severely ill-posed nonlinear boundary value inverse problem. A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and the reconstructed images. An effort is made to give a specific example to a fundamental question: whether and how one can benefit from the theoretical structure of a mathematical problem to develop task-oriented and structure-conforming deep neural networks? Specifically, inspired by direct sampling methods for inverse problems, the 1D boundary data in different frequencies are preprocessed by a partial differential equation-based feature map to yield 2D harmonic extensions as different input channels. Then, by introducing learnable non-local kernels, the direct sampling is recast to a modified attention mechanism. The new method achieves superior accuracy over its predecessors and contemporary operator learners and shows robustness to noises in benchmarks. This research shall strengthen the insights that, despite being invented for natural language processing tasks, the attention mechanism offers great flexibility to be modified in conformity with the a priori mathematical knowledge, which ultimately leads to the design of more physics-compatible neural architectures. 
    more » « less
  5. In design, fabrication, and control problems, we are often faced with the task of synthesis, in which we must generate an object or configuration that satisfies a set of constraints while maximizing one or more objective functions. The synthesis problem is typically characterized by a physical process in which many different realizations may achieve the goal. This many-to-one map presents challenges to the supervised learning of feed-forward synthesis, as the set of viable designs may have a complex structure. In addition, the non-differentiable nature of many physical simulations prevents efficient direct optimization. We address both of these problems with a two-stage neural network architecture that we may consider to be an autoencoder. We first learn the decoder: a differentiable surrogate that approximates the many-to-one physical realization process. We then learn the encoder, which maps from goal to design, while using the fixed decoder to evaluate the quality of the realization. We evaluate the approach on two case studies: extruder path planning in additive manufacturing and constrained soft robot inverse kinematics. We compare our approach to direct optimization of the design using the learned surrogate, and to supervised learning of the synthesis problem. We find that our approach produces higher quality solutions than supervised learning, while being competitive in quality with direct optimization, at a greatly reduced computational cost. 
    more » « less