We consider high-order strongly nonlinear long wave models expanded in a single small parameter measuring the ratio of the water depth to the characteristic wavelength. By examining its dispersion relation, the high-order system for the bottom velocity is found stable to all disturbances at any order of approximation. On the other hand, systems for other velocities can be unstable and even ill-posed, as signified by the unbounded maximum growth. Under the steady assumption, a new third-order solitary wave solution of the Euler equations is obtained using the high-order strongly nonlinear system and is expanded in an amplitude parameter, which is different from that used in weakly nonlinear theory. The third-order solution is shown to well describe various physical quantities induced by a finite-amplitude solitary wave, including the wave profile, horizontal velocity profile, particle velocity at the crest and bottom pressure. For numerical computations, the first- and second-order strongly nonlinear systems for the bottom velocity are considered. It is shown that finite difference schemes are unstable due to truncation errors introduced in approximating high-order spatial derivatives and, therefore, a more accurate spatial discretization scheme is necessary. Using a pseudo-spectral method based on finite Fourier series combined with an iterative scheme for the inversion of a non-local operator, the strongly nonlinear systems are solved numerically for the propagation of a single solitary wave and the head-on collision of two counter-propagating solitary waves of finite amplitudes, and the results are compared with previous laboratory measurements.
more »
« less
Model order reduction of layered waveguides via rational Krylov fitting
Abstract Rational approximation recently emerged as an efficient numerical tool for the solution of exterior wave propagation problems. Currently, this technique is limited to wave media which are invariant along the main propagation direction. We propose a new model order reduction-based approach for compressing unbounded waveguides with layered inclusions. It is based on the solution of a nonlinear rational least squares problem using the RKFIT method. We show that approximants can be converted into an accurate finite difference representation within a rational Krylov framework. Numerical experiments indicate that RKFIT computes more accurate grids than previous analytic approaches and even works in the presence of pronounced scattering resonances. Spectral adaptation effects allow for finite difference grids with dimensions near or even below the Nyquist limit.
more »
« less
- Award ID(s):
- 2110773
- PAR ID:
- 10340866
- Date Published:
- Journal Name:
- BIT Numerical Mathematics
- ISSN:
- 0006-3835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have extended the distributional finite difference method (DFDM) to simulate the seismic‐wave propagation in 3D regional earth models. DFDM shares similarities to the discontinuous finite element method on a global scale and to the finite difference method locally. Instead of using linear staggered finite‐difference operators, we employ DFDM operators based on B‐splines and a definition of derivatives in the sense of distributions, to obtain accurate spatial derivatives. The weighted residuals method used in DFDM's locally weak formalism of spatial derivatives accurately and naturally accounts for the free surface, curvilinear meshing, and solid‐fluid coupling, for which it only requires setting the shear modulus and the continuity condition to zero. The computational efficiency of DFDM is comparable to the spectral element method (SEM) due to the more accurate mass matrix and a new band‐diagonal mass factorization. Numerical examples show that the superior accuracy of the band‐diagonal mass and stiffness matrices in DFDM enables fewer points per wavelength, approaching the spectral limit, and compensates for the increased computational burden due to four Lebedev staggered grids. Specifically, DFDM needs 2.5 points per wavelength, compared to the five points per wavelength required in SEM for 0.5% waveform error in a homogeneous model. Notably, while maintaining the same accuracy in the solid domain, DFDM demonstrates superior accuracy in the fluid domain compared to SEM. To validate its accuracy and flexibility, we present various 3D benchmarks involving homogeneous and heterogeneous regional elastic models and solid‐fluid coupling in both Cartesian and spherical settings.more » « less
-
Curvilinear, multiblock summation-by-parts finite difference operators with the simultaneous approximation term method provide a stable and accurate framework for solving the wave equation in second order form. That said, the standard method can become arbitrarily stiff when characteristic boundary conditions and nonlinear interface conditions are used. Here we propose a new technique that avoids this stiffness by using characteristic variables to “upwind” the boundary and interface treatment. This is done through the introduction of an additional block boundary displacement variable. Using a unified energy, which expresses both the standard as well as characteristic boundary and interface treatment, we show that the resulting scheme has semidiscrete energy stability for the scalar anisotropic wave equation. The theoretical stability results are confirmed with numerical experiments that also demonstrate the accuracy and robustness of the proposed scheme. The numerical results also show that the characteristic scheme has a time step restriction based on standard wave propagation considerations and not the boundary closure.more » « less
-
Wave propagation is fundamental to applications including natural resource exploration, nuclear fusion research, and military defense, among others. However, developing accurate and efficient numerical algorithms for solving time-harmonic wave propagation problems is notoriously difficult. One difficulty is that classical discretization techniques (e.g., Galerkin finite elements, finite difference, etc.) yield indefinite discrete systems that preclude the use of many scalable solution algorithms. Significant progress has been made to develop specialized preconditioners for high-frequency wave propagation problems but robust and scalable solvers for general problems, including non-homogenous media and complex geometries, remain elusive. An alternative approach is to use minimum residual discretization methods—that yield Hermitian positive-definite discrete systems—and may be amenable to more standard preconditioners. Indeed, popularization of the first-order system least-squares methodology (FOSLS) was driven by the applicability of geometric and algebraic multigrid to otherwise indefinite problems. However, for wave propagation problems, FOSLS is known to be highly dissipative and is thus less competitive in the high-frequency regime. The discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan is a minimum residual finite element method with several additional attractive properties: mesh-independent stability, a built-in error indicator, and applicability to a number of variational formulations. In the context of high-frequency wave propagation, the ultraweak DPG formulation has been observed to produce pollution error roughly commensurate to Galerkin discretizations. DPG discretizations may thus deliver accuracy typical of classical discretization techniques, but result in Hermitian positive-definite discrete systems that are often more amenable to preconditioning. A multigrid preconditioner for DPG systems, developed in the dissertation work of S. Petrides, was shown to scale efficiently in a shared-memory implementation. The primary objective of this dissertation is development of an efficient, distributed implementation of the DPG multigrid solver (DPG-MG). The distributed DPG-MG solver developed in this work will be demonstrated to be massively scalable, enabling solution of three-dimensional problems with O(10¹²) degrees of freedom on up to 460 000 CPU cores, an unprecedented scale for high-frequency wave propagation. The scalability of the DPG-MG solver will be further combined with hp-adaptivity to enable efficient solution of challenging real-world high-frequency wave propagation problems including optical fiber modeling, simulation of RF heating in tokamak devices, and seismic simulation. These applications include complex three-dimensional geometries, heterogeneous and anisotropic media, and localized features; demonstrating the robustness and versatility of the solver and tools developed in this dissertation.more » « less
-
SUMMARY We present a time-domain distributional finite-difference scheme based on the Lebedev staggered grid for the numerical simulation of wave propagation in acoustic and elastic media. The central aspect of the proposed method is the representation of the stresses and displacements with different sets of B-splines functions organized according to the staggered grid. The distributional finite-difference approach allows domain-decomposition, heterogeneity of the medium, curvilinear mesh, anisotropy, non-conformal interfaces, discontinuous grid and fluid–solid interfaces. Numerical examples show that the proposed scheme is suitable to model wave propagation through the Earth, where sharp interfaces separate large, relatively homogeneous layers. A few domains or elements are sufficient to represent the Earth’s internal structure without relying on advanced meshing techniques. We compare seismograms obtained with the proposed scheme and the spectral element method, and we show that our approach offers superior accuracy, reduced memory usage, and comparable efficiency.more » « less
An official website of the United States government

