Abstract We develop a new finite difference method for the wave equation in second order form. The finite difference operators satisfy a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The proposed method is termed as energy-based because of its similarity with the energy-based discontinuous Galerkin method. When imposing the Dirichlet boundary condition and material interface conditions, the traditional SBP-SAT discretization uses a penalty term with a mesh-dependent parameter, which is not needed in our method. Furthermore, numerical dissipation can be added to the discretization through the boundary and interface conditions. We present numerical experiments that verify convergence and robustness of the proposed method.
more »
« less
A Non-Stiff Summation-By-Parts Finite Difference Method for the Scalar Wave Equation in Second Order Form: Characteristic Boundary Conditions and Nonlinear Interfaces
Curvilinear, multiblock summation-by-parts finite difference operators with the simultaneous approximation term method provide a stable and accurate framework for solving the wave equation in second order form. That said, the standard method can become arbitrarily stiff when characteristic boundary conditions and nonlinear interface conditions are used. Here we propose a new technique that avoids this stiffness by using characteristic variables to “upwind” the boundary and interface treatment. This is done through the introduction of an additional block boundary displacement variable. Using a unified energy, which expresses both the standard as well as characteristic boundary and interface treatment, we show that the resulting scheme has semidiscrete energy stability for the scalar anisotropic wave equation. The theoretical stability results are confirmed with numerical experiments that also demonstrate the accuracy and robustness of the proposed scheme. The numerical results also show that the characteristic scheme has a time step restriction based on standard wave propagation considerations and not the boundary closure.
more »
« less
- Award ID(s):
- 2053372
- PAR ID:
- 10471629
- Publisher / Repository:
- SpringerLink
- Date Published:
- Journal Name:
- Journal of Scientific Computing
- Volume:
- 93
- Issue:
- 1
- ISSN:
- 0885-7474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We compare the performance of energy-based and entropy-conservative schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the non-conservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel'dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolated Lstar galaxy, switching between the schemes results in ~20-30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energy implicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes.more » « less
-
Abstract We compare the performance of energy-based and entropy-conserving schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the nonconservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel’dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolatedL⋆galaxy, switching between the schemes results in ≈20%–30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energyimplicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes.more » « less
-
Interactions between an evolving solid and inviscid flow can result in substantial computational complexity, particularly in circumstances involving varied boundary conditions between the solid and fluid phases. Examples of such interactions include melting, sublimation, and deflagration, all of which exhibit bidirectional coupling, mass/heat transfer, and topological change of the solid–fluid interface. The diffuse interface method is a powerful technique that has been used to describe a wide range of solid-phase interface-driven phenomena. The implicit treatment of the interface eliminates the need for cumbersome interface tracking, and advances in adaptive mesh refinement have provided a way to sufficiently resolve diffuse interfaces without excessive computational cost. However, the general scale-invariant coupling of these techniques to flow solvers has been relatively unexplored. In this work, a robust method is presented for treating diffuse solid–fluid interfaces with arbitrary boundary conditions. Source terms defined over the diffuse region mimic boundary conditions at the solid–fluid interface, and it is demonstrated that the diffuse length scale has no adverse effects. To show the efficacy of the method, a one-dimensional implementation is introduced and tested for three types of boundaries: mass flux through the boundary, a moving boundary, and passive interaction of the boundary with an incident acoustic wave. Two-dimensional results are presented as well these demonstrate expected behavior in all cases. Convergence analysis is also performed and compared against the sharp-interface solution, and linear convergence is observed. This method lays the groundwork for the extension to viscous flow and the solution of problems involving time-varying mass-flux boundaries.more » « less
-
In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions.more » « less
An official website of the United States government

