skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Excitonic effects at the temperature-dependent direct bandgap of Ge
The temperature dependence of the complex dielectric function [Formula: see text] of bulk Ge near the direct bandgap was investigated with spectroscopic ellipsometry at temperatures between 10 and 710 K. Second derivatives of the dielectric function with respect to energy are obtained using a digital linear filter method. A model that incorporates excitonic effects using the Tanguy model for the Hulthén potential [C. Tanguy, Phys. Rev. B 60, 10660 (1999)] was used to fit the dielectric function and its second derivatives simultaneously. Using [Formula: see text] theory and literature values for effective masses, reasonable agreement with the experiment is obtained for [Formula: see text] up to room temperature using the direct bandgap and its broadening as the only adjustable parameters.  more » « less
Award ID(s):
2119583
PAR ID:
10340876
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
16
ISSN:
0021-8979
Page Range / eLocation ID:
165701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the elevated temperature (22 °C [Formula: see text]  T [Formula: see text] 600 °C) dielectric function properties of melt grown single crystal ZnGa2O4using a spectroscopic ellipsometry approach. A temperature dependent Cauchy dispersion analysis was applied across the transparent spectrum to determine the high-frequency index of refraction yielding a temperature dependent slope of 3.885(2) × 10−5 K−1. A model dielectric function critical point analysis was applied to examine the dielectric function and critical point transitions for each temperature. The lowest energy M0-type critical point associated with the direct bandgap transition in ZnGa2O4is shown to red-shift linearly as the temperature is increased with a subsequent slope of −0.72(4) meV K−1. Furthermore, increasing the temperature results in a reduction of the excitonic amplitude and increase in the exciton broadening akin to exciton evaporation and lifetime shortening. This matches current theoretical understanding of excitonic behavior and critically provides justification for an anharmonic broadened Lorentz oscillator to be applied for model analysis of excitonic contributions. 
    more » « less
  2. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  3. Density-functional theory is used to validate spin-resolved and orbital-resolved metrics of localized electronic states to anticipate ferroic and dielectric properties of [Formula: see text] and [Formula: see text] under epitaxial strain. Using previous investigations of epitaxial phase stability in these systems, trends in properties such as spontaneous polarization and bandgap are compared to trends in atomic orbital occupation derived from projected density of states. Based on first principles theories of ferroic and dielectric properties, such as the Modern Theory of Polarization for spontaneous polarization or Goodenough–Kanamori theory for magnetic interactions, this work validates the sufficiency of metrics of localized electronic states to predict trends in multiple ferroic and dielectric properties. Capabilities of these metrics include the anticipation of the transition from G-Type to C-Type antiferromagnetism in [Formula: see text] under 4.2% compressive epitaxial strain and the interval of C-Type antiferromagnetism from 3% to 7% tensile epitaxial strain in [Formula: see text]. The results of this work suggest a capability of localized electronic metrics to predict multiferroic characteristics in the Bi X[Formula: see text] systems under epitaxial strain, with single or mixed B-site occupation. 
    more » « less
  4. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs. 
    more » « less
  5. We introduce a Frobenius-like structure for the [Formula: see text] Gaudin model. Namely, we introduce potential functions of the first and second kind. We describe the Shapovalov form in terms of derivatives of the potential of the first kind and the action of Gaudin Hamiltonians in terms of derivatives of the potential of the second kind. 
    more » « less