skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: T-LoHo: A Bayesian Regularization Model for Structured Sparsity and Smoothness on Graphs
Graphs have been commonly used to represent complex data structures. In models dealing with graph-structured data, multivariate parameters may not only exhibit sparse patterns but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high-dimensional parameters with graphical relations, referred to as the Tree-based Low-rank Horseshoe (T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The T-LoHo prior can be embedded in many high-dimensional hierarchical models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked by a graph, so that the resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters such as the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and a real data application for anomaly detection on a road network. The results indicate substantial improvements over other competing methods such as the sparse fused lasso.  more » « less
Award ID(s):
1854655
PAR ID:
10340883
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Page Range / eLocation ID:
598-609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms. 
    more » « less
  2. Abstract This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semicontinuous responses. In this paper, we present a methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum‐of‐tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high‐dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees—a heteroskedastic log‐normal hurdle model with a “shrink‐toward‐homoskedasticity” prior and a gamma hurdle model. 
    more » « less
  3. We consider the problem of nonparametric regression in the high-dimensional setting in which P≫N. We study the use of overlapping group structures to improve prediction and variable selection. These structures arise commonly when analyzing DNA microarray data, where genes can naturally be grouped according to genetic pathways. We incorporate overlapping group structure into a Bayesian additive regression trees model using a prior constructed so that, if a variable from some group is used to construct a split, this increases the probability that subsequent splits will use predictors from the same group. We refer to our model as an overlapping group Bayesian additive regression trees (OG-BART) model, and our prior on the splits an overlapping group Dirichlet (OG-Dirichlet) prior. Like the sparse group lasso, our prior encourages sparsity both within and between groups. We study the correlation structure of the prior, illustrate the proposed methodology on simulated data, and apply the methodology to gene expression data to learn which genetic pathways are predictive of breast cancer tumor metastasis. 
    more » « less
  4. Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression. 
    more » « less
  5. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the sparse inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. Optimization in the previous approach was performed using an alternating minimization (AM) approach whose performance depends upon choice of a penalty parameter. In this paper we investigate an alternating direction method of multipliers (ADMM) approach for optimization to mitigate dependence on the penalty parameter. We also investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using synthetic and real data. Comparisons with the "usual" i.i.d. modeling of time series for graph estimation are also provided. 
    more » « less