skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving the use of the randomized singular value decomposition for the inversion of gravity and magnetic data
The focusing inversion of gravity and magnetic potential-field data using the randomized singular value decomposition (RSVD) method is considered. This approach facilitates tackling the computational challenge that arises in the solution of the inversion problem that uses the standard and accurate approximation of the integral equation kernel. We have developed a comprehensive comparison of the developed methodology for the inversion of magnetic and gravity data. The results verify that there is an important difference between the application of the methodology for gravity and magnetic inversion problems. Specifically, RSVD is dependent on the generation of a rank [Formula: see text] approximation to the underlying model matrix, and the results demonstrate that [Formula: see text] needs to be larger, for equivalent problem sizes, for the magnetic problem compared to the gravity problem. Without a relatively large [Formula: see text], the dominant singular values of the magnetic model matrix are not well approximated. We determine that this is due to the spectral properties of the matrix. The comparison also shows us how the use of the power iteration embedded within the randomized algorithm improves the quality of the resulting dominant subspace approximation, especially in magnetic inversion, yielding acceptable approximations for smaller choices of [Formula: see text]. Further, we evaluate how the differences in spectral properties of the magnetic and gravity input matrices also affect the values that are automatically estimated for the regularization parameter. The algorithm is applied and verified for the inversion of magnetic data obtained over a portion of the Wuskwatim Lake region in Manitoba, Canada.  more » « less
Award ID(s):
1913136
PAR ID:
10340908
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
GEOPHYSICS
Volume:
85
Issue:
5
ISSN:
0016-8033
Page Range / eLocation ID:
G93 to G107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Given an element set E of order n, a collection of subsets [Formula: see text], a cost c S on each set [Formula: see text], a covering requirement r e for each element [Formula: see text], and an integer k, the goal of a minimum partial set multicover problem (MinPSMC) is to find a subcollection [Formula: see text] to fully cover at least k elements such that the cost of [Formula: see text] is as small as possible and element e is fully covered by [Formula: see text] if it belongs to at least r e sets of [Formula: see text]. This problem generalizes the minimum k-union problem (MinkU) and is believed not to admit a subpolynomial approximation ratio. In this paper, we present a [Formula: see text]-approximation algorithm for MinPSMC, in which [Formula: see text] is the maximum size of a set in S. And when [Formula: see text], we present a bicriteria algorithm fully covering at least [Formula: see text] elements with approximation ratio [Formula: see text], where [Formula: see text] is a fixed number. These results are obtained by studying the minimum density subcollection problem with (or without) cardinality constraint, which might be of interest by itself. 
    more » « less
  2. null (Ed.)
    SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada. 
    more » « less
  3. In this paper, we study kernel ridge-less regression, including the case of interpolating solutions. We prove that maximizing the leave-one-out ([Formula: see text]) stability minimizes the expected error. Further, we also prove that the minimum norm solution — to which gradient algorithms are known to converge — is the most stable solution. More precisely, we show that the minimum norm interpolating solution minimizes a bound on [Formula: see text] stability, which in turn is controlled by the smallest singular value, hence the condition number, of the empirical kernel matrix. These quantities can be characterized in the asymptotic regime where both the dimension ([Formula: see text]) and cardinality ([Formula: see text]) of the data go to infinity (with [Formula: see text] as [Formula: see text]). Our results suggest that the property of [Formula: see text] stability of the learning algorithm with respect to perturbations of the training set may provide a more general framework than the classical theory of Empirical Risk Minimization (ERM). While ERM was developed to deal with the classical regime in which the architecture of the learning network is fixed and [Formula: see text], the modern regime focuses on interpolating regressors and overparameterized models, when both [Formula: see text] and [Formula: see text] go to infinity. Since the stability framework is known to be equivalent to the classical theory in the classical regime, our results here suggest that it may be interesting to extend it beyond kernel regression to other overparameterized algorithms such as deep networks. 
    more » « less
  4. null (Ed.)
    In this paper, we consider the distributed version of Support Vector Machine (SVM) under the coordinator model, where all input data (i.e., points in [Formula: see text] space) of SVM are arbitrarily distributed among [Formula: see text] nodes in some network with a coordinator which can communicate with all nodes. We investigate two variants of this problem, with and without outliers. For distributed SVM without outliers, we prove a lower bound on the communication complexity and give a distributed [Formula: see text]-approximation algorithm to reach this lower bound, where [Formula: see text] is a user specified small constant. For distributed SVM with outliers, we present a [Formula: see text]-approximation algorithm to explicitly remove the influence of outliers. Our algorithm is based on a deterministic distributed top [Formula: see text] selection algorithm with communication complexity of [Formula: see text] in the coordinator model. 
    more » « less
  5. We consider the following general network design problem. The input is an asymmetric metric (V, c), root [Formula: see text], monotone submodular function [Formula: see text], and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a simple quasi-polynomial time [Formula: see text]-approximation algorithm for this problem, in which [Formula: see text] is the number of vertices in an optimal solution. As a consequence, we obtain an [Formula: see text]-approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved [Formula: see text]-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first nontrivial approximation ratio. Under certain complexity assumptions, our approximation ratios are the best possible (up to constant factors). 
    more » « less