Symmetry is an important and unifying notion in many areas of physics. In quantum mechanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry to identify the possible physical transitions. This allows us to simplify calculations and characterize potentially complicated dynamics of the system with relative ease. Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures. In our present work, we develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers. Our approach estimates asymmetry measures based on the Hilbert–Schmidt distance, which is significantly easier, in a computational sense, than using fidelity as a metric. The method is derived to measure symmetries of states, channels, Lindbladians, and measurements. We apply this method to a number of scenarios involving open quantum systems, including the amplitude damping channel and a spin chain, and we test for symmetries within and outside the finite symmetry group of the Hamiltonian and Lindblad operators.
Identification of approximate symmetries in biological development
Virtually all forms of life, from single-cell eukaryotes to complex, highly differentiated multicellular organisms, exhibit a property referred to as symmetry. However, precise measures of symmetry are often difficult to formulate and apply in a meaningful way to biological systems, where symmetries and asymmetries can be dynamic and transient, or be visually apparent but not reliably quantifiable using standard measures from mathematics and physics. Here, we present and illustrate a novel measure that draws on concepts from information theory to quantify the degree of symmetry, enabling the identification of approximate symmetries that may be present in a pattern or a biological image. We apply the measure to rotation, reflection and translation symmetries in patterns produced by a Turing model, as well as natural objects (algae, flowers and leaves). This method of symmetry quantification is unbiased and rigorous, and requires minimal manual processing compared to alternative measures. The proposed method is therefore a useful tool for comparison and identification of symmetries in biological systems, with potential future applications to symmetries that arise during development, as observed in vivo or as produced by mathematical models. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.
more »
« less
- Award ID(s):
- 1839810
- PAR ID:
- 10340976
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 379
- Issue:
- 2213
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Research on the structural complexity of networks has produced many useful results in graph theory and applied disciplines such as engineering and data analysis. This paper is intended as a further contribution to this area of research. Here we focus on measures designed to compare graphs with respect to symmetry. We do this by means of a novel characteristic of a graph G, namely an ``orbit polynomial.'' A typical term of this univariate polynomial is of the form czn, where c is the number of orbits of size n of the automorphism group of G. Subtracting the orbit polynomial from 1 results in another polynomial that has a unique positive root, which can serve as a relative measure of the symmetry of a graph. The magnitude of this root is indicative of symmetry and can thus be used to compare graphs with respect to that property. In what follows, we will prove several inequalities on the unique positive roots of orbit polynomials corresponding to different graphs, thus showing differences in symmetry. In addition, we present numerical results relating to several classes of graphs for the purpose of comparing the new symmetry measure with existing ones. Finally, it is applied to a set of isomers of the chemical compound adamantane C10H16. We believe that the measure can be quite useful for tackling applications in chemistry, bioinformatics, and structure-oriented drug design.more » « less
-
A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.more » « less
-
We analyze lattice Hamiltonian systems whose global symmetries have ’t Hooft anomalies. As is common in the study of anomalies, they are probed by coupling the system to classical background gauge fields. For flat fields (vanishing field strength), the nonzero spatial components of the gauge fields can be thought of as twisted boundary conditions, or equivalently, as topological defects. The symmetries of the twisted Hilbert space and their representations capture the anomalies. We demonstrate this approach with a number of examples. In some of them, the anomalous symmetries are internal symmetries of the lattice system, but they do not act on-site. (We clarify the notion of “on-site action.”) In other cases, the anomalous symmetries involve lattice translations. Using this approach we frame many known and new results in a unified fashion. In this work, we limit ourselves to 1+1d systems with a spatial lattice. In particular, we present a lattice system that flows to the c=1 compact boson system with any radius (no BKT transition) with the full internal symmetry of the continuum theory, with its anomalies and its T-duality. As another application, we analyze various spin chain models and phrase their Lieb-Shultz-Mattis theorem as an ’t Hooft anomaly matching condition. We also show in what sense filling constraints like Luttinger theorem can and cannot be viewed as reflecting an anomaly. As a by-product, our understanding allows us to use information from the continuum theory to derive some exact results in lattice model of interest, such as the lattice momenta of the low-energy states.more » « less
-
Based on several previous examples, we summarize explicitly thegeneral procedure to gauge models with subsystem symmetries, which aresymmetries with generators that have support within a sub-manifold ofthe system. The gauging process can be applied to any local quantummodel on a lattice that is invariant under the subsystem symmetry. Wefocus primarily on simple 3D paramagnetic states with planar symmetries.For these systems, the gauged theory may exhibit foliated fracton orderand we find that the species of symmetry charges in the paramagnetdirectly determine the resulting foliated fracton order. Moreover, wefind that gauging linear subsystem symmetries in 2D or 3D models resultsin a self-duality similar to gauging global symmetries in 1D.more » « less