Quantum circuits with gates (local unitaries) respecting a global symmetry have broad applications in quantum information science and related fields, such as condensed-matter theory and quantum thermodynamics. However, despite their widespread use, fundamental properties of such circuits are not well understood. Recently, it was found that generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates that respect the same symmetry. This observation raises important open questions: What unitary transformations can be realized with -local gates that respect a global symmetry? In other words, in the presence of a global symmetry, how does the locality of interactions constrain the possible time evolution of a composite system? In this work, we address these questions for the case of Abelian (commutative) symmetries and develop constructive methods for synthesizing circuits with such symmetries. Remarkably, as a corollary, we find that, while the locality of interactions still imposes additional constraints on realizable unitaries, certain restrictions observed in the case of non-Abelian symmetries do not apply to circuits with Abelian symmetries. For instance, in circuits with a general non-Abelian symmetry such as , the unitary realized in a subspace with one irreducible representation (charge) of the symmetry dictates the realized unitaries in multiple other sectors with inequivalent representations of the symmetry. Furthermore, in certain sectors, rather than all unitaries respecting the symmetry, the realizable unitaries are the symplectic or orthogonal subgroups of this group. We prove that none of these restrictions appears in the case of Abelian symmetries. This result suggests that global non-Abelian symmetries may affect the thermalization of quantum systems in ways not possible under Abelian symmetries. Published by the American Physical Society2024
more »
« less
Efficient Quantum Algorithms for Testing Symmetries of Open Quantum Systems
Symmetry is an important and unifying notion in many areas of physics. In quantum mechanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry to identify the possible physical transitions. This allows us to simplify calculations and characterize potentially complicated dynamics of the system with relative ease. Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures. In our present work, we develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers. Our approach estimates asymmetry measures based on the Hilbert–Schmidt distance, which is significantly easier, in a computational sense, than using fidelity as a metric. The method is derived to measure symmetries of states, channels, Lindbladians, and measurements. We apply this method to a number of scenarios involving open quantum systems, including the amplitude damping channel and a spin chain, and we test for symmetries within and outside the finite symmetry group of the Hamiltonian and Lindblad operators.
more »
« less
- Award ID(s):
- 2047564
- PAR ID:
- 10481310
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Open Systems & Information Dynamics
- Volume:
- 30
- Issue:
- 03
- ISSN:
- 1230-1612
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Generalized symmetries often appear in the form of emergent symmetries in low energy effective descriptions of quantum many-body systems. Non-invertible symmetries are a particularly exotic class of generalized symmetries, in that they are implemented by transformations that do not form a group. Such symmetries appear generically in gapless states of quantum matter constraining the low-energy dynamics. To provide a UV-complete description of such symmetries, it is useful to construct lattice models that respect these symmetries exactly. In this paper, we discuss two families of one-dimensional lattice Hamiltonians with finite on-site Hilbert spaces: one with (invertible) $$S^{\,}_3$$ symmetry and the other with non-invertible $$\mathsf{Rep}(S^{\,}_3)$$ symmetry. Our models are largely analytically tractable and demonstrate all possible spontaneous symmetry breaking patterns of these symmetries. Moreover, we use numerical techniques to study the nature of continuous phase transitions between the different symmetry-breaking gapped phases associated with both symmetries. Both models have self-dual lines, where the models are enriched by (intrinsic) non-invertible symmetries generated by Kramers-Wannier-like duality transformations. We provide explicit lattice operators that generate these non-invertible self-duality symmetries. We show that the enhanced symmetry at the self-dual lines is described by a 2+1D symmetry-topological-order (SymTO) of type $$\overline{\mathrm{JK}}^{\,}_4\times \mathrm{JK}^{\,}_4$$. The condensable algebras of the SymTO determine the allowed gapped and gapless states of the self-dual $$S^{\,}_3$$-symetric and $$\mathsf{Rep}(S^{\,}_3)$$-symmetric models.more » « less
-
A symmetry of a state |ψ⟩ is a unitary operator of which |ψ⟩ is an eigenvector. When |ψ⟩ is an unknown state supplied by a black-box oracle, the state's symmetries serve to characterize it, and often relegate much of the desired information about |ψ⟩. In this paper, we develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of |ψ⟩ with no a priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. Our scheme can be implemented efficiently on average with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We demonstrate our algorithm on representative families of states.more » « less
-
Abstract A symmetry of a state is a unitary operator of which is an eigenvector. When is an unknown state supplied by a black-box oracle, the state’s symmetries provide key physical insight into the quantum system; symmetries also boost many crucial quantum learning techniques. In this paper, we develop a variational hybrid quantum–classical learning scheme to systematically probe for symmetries of with noa prioriassumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. An iteration of the learning algorithm can be implemented efficiently with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We simulate our algorithm on representative families of states, including cluster states and ground states of Rydberg and Ising Hamiltonians. We also find that the numerical query complexity scales well for up to moderate system sizes.more » « less
-
Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms on choice examples by using the variational approach to quantum algorithms, replacing the quantum prover with a parameterized circuit. We demonstrate this approach for numerous examples using the IBM quantum noiseless and noisy simulators, and we observe that the algorithms perform well in the noiseless case and exhibit noise resilience in the noisy case. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of these algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective.more » « less
An official website of the United States government

