skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mass limits of the extremely fast-spinning white dwarf CTCV J2056–3014
CTCV J2056–3014 is a nearby cataclysmic variable with an orbital period of approximately 1.76 h at a distance of about 853 light-years from the Earth. Its recently reported X-ray properties suggest that J2056–3014 is an unusual accretion-powered intermediate polar that harbors a fast-spinning white dwarf (WD) with a spin period of 29.6 s. The low X-ray luminosity and the relatively modest accretion rate per unit area suggest that the shock is not occurring near the WD surface. It has been argued that, under these conditions, the maximum temperature of the shock cannot be directly used to determine the mass of the WD (which, under the abovementioned assumptions, would be around 0.46 M ⊙ ). Here, we explore the stability of this rapidly rotating WD using a modern equation of state (EoS) that accounts for electron–ion, electron–electron, and ion–ion interactions. For this EoS, we determine the mass density thresholds for the onset of pycnonuclear fusion reactions and study the impact of microscopic stability and rapid rotation on the structure and stability of WDs, considering them with helium, carbon, oxygen, and neon. From this analysis, we obtain a minimum mass for CTCV J2056–3014 of 0.56 M ⊙ and a maximum mass of around 1.38 M ⊙ . If the mass of CTCV J2056–3014 is close to the lower mass limit, its equatorial radius would be on the order of 10 4 km due to rapid rotation. Such a radius is significantly larger than that of a nonrotating WD of average mass (0.6  M ⊙ ), which is on the order of 7 × 10 3 km. The effects on the minimum mass of J2056–3014 due to changes in the temperature and composition of the stellar matter were found to be negligibly small.  more » « less
Award ID(s):
2012152
PAR ID:
10341091
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
656
ISSN:
0004-6361
Page Range / eLocation ID:
A77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a Bayesian framework for joint and coherent analyses of multimessenger binary neutron star signals. The method, implemented in our bajes infrastructure, incorporates a joint likelihood for multiple datasets, support for various semi-analytical kilonova models and numerical-relativity (NR) informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. As a first application, we analyze the gravitational-wave GW170817 and the kilonova AT2017gfo data. These results are then combined with the most recent X-ray pulsars analyses of PSR J0030+0451 and PSR J0740+6620 to obtain EOS constraints.Various constraints on the mass-radius diagram and neutron star properties are then obtained by resampling over a set of ten million parametrized EOS built under minimal assumptions. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the instrinc parameters, the mass ratio. The inclusion of NR informed relations strongly improves over the case of using an agnostic prior on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius to R1.4=12.30−0.56+0.81R1.4​=12.30−0.56+0.81​ km (R1.4=13.20−0.90+0.91R1.4​=13.20−0.90+0.91​ km) and the maximum mass to Mmax=2.28−0.17+0.25 M⊙Mmax​=2.28−0.17+0.25​ M⊙​ (Mmax=2.32−0.19+0.30 M⊙Mmax​=2.32−0.19+0.30​ M⊙​) where the ST+PDT (PDT-U) analysis of Vinciguerra et a (2023) for PSR J0030+0451 is employed. Hence, the systematics on PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints. 
    more » « less
  2. Abstract Multimessenger observations of binary neutron star mergers can provide valuable information on the nuclear equation of state (EOS). Here, we investigate the extent to which electromagnetic observations of the associated kilonovae allow us to place constraints on the EOS. For this, we use state-of-the-art three-dimensional general-relativistic magnetohydrodynamics simulations and detailed nucleosynthesis modeling to connect properties of observed light curves to properties of the accretion disk, and hence, the EOS. Using our general approach, we use multimessenger observations of GW170817/AT2017gfo to study the impact of various sources of uncertainty on inferences of the EOS. We constrain the radius of a 1.4Mneutron star to lie within 10.30 ≤R1.4≤ 13.0 km and the maximum mass to beMTOV≤ 3.06M
    more » « less
  3. Vasconcellos, C.; Weber, F. (Ed.)
    In this study, we estimate the mass density thresholds for the onset of electron capture reactions and pycnonuclear fusion reactions in the cores of fast, massive and highly magnetized white dwarfs and white dwarf pulsars and discuss the impact of microscopic stability and rapid rotation on the structure and stability of such objects. We find that fast rotation increases the mass of a WD by up to 10%, while the central density may drop by one to two orders of magnitude, depending on stellar mass and rate of rotation. We also note that the central densities of the rotating WDs are smaller than those of the non-rotating stars, since less pressure is to be provided by the nuclear equation of state in the rotating case, and that the maximum-mass limit slightly decreases when lattice contributions are taken into account, which soften the equation of state mildly. This softening leads to white dwarfs with somewhat smaller radii and therefore smaller Kepler periods. Overall, we find that very massive and magnetic 12C +16O white dwarfs have rotational Kepler periods on the order of 0.5 seconds. Pycnonuclear reactions are triggered in these white dwarfs at masses that are markedly smaller than the maximum white-dwarf masses. The corresponding rotational periods turn out to be in the 5 second (around 2 Hz) range 
    more » « less
  4. Abstract Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS. 
    more » « less
  5. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers. 
    more » « less